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Figure 1: Using offline adaptive sampling, our method converts general parametric designs into Fab Forms, parameterized object represen-
tations supporting interactive customization, while ensuring high-level object validity. All realized designs are functional and fabricable and
can be previewed in real time. We automatically skin these representations with a Web customization UI intended for casual users.

Abstract

We address the problem of allowing casual users to customize para-
metric models while maintaining their valid state as 3D-printable
functional objects. We define Fab Form as any design representa-
tion that lends itself to interactive customization by a novice user,
while remaining valid and manufacturable. We propose a method
to achieve these Fab Form requirements for general parametric de-
signs tagged with a general set of automated validity tests and a
small number of parameters exposed to the casual user. Our solu-
tion separates Fab Form evaluation into a precomputation stage and
a runtime stage. Parts of the geometry and design validity (such
as manufacturability) are evaluated and stored in the precomputa-
tion stage by adaptively sampling the design space. At runtime the
remainder of the evaluation is performed. This allows interactive
navigation in the valid regions of the design space using an auto-
matically generated Web user interface (UI). We evaluate our ap-
proach by converting several parametric models into corresponding
Fab Forms.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations I.3.8 [Computer Graphics]: Applications—;

Keywords: fabrication, customizable design, precomputation,
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1 Introduction

Custom products offer inherent advantages over their mass-
produced counterparts. Personalized objects can provide more
comfort, unique aesthetic appeal, or better performance (e.g. shoes,
jewelry, prosthetic limbs). Additive manufacturing promises cost-
effective fabrication of such personalized products, as there is a
steady progress in the 3D printing hardware and the range of avail-
able materials, as well as a reduction in cost and improved avail-
ability to consumers (e.g. through 3D printing services).

Yet, taking advantage of additive manufacturing for personalization
requires developing customizable digital models and fabrication ap-
plications that can be used reliably by everyone. This task proves
to be quite challenging, and fabricable end-user-customizable ob-
jects available today are very limited. Recent attempts such as
one-off apps for customization of household objects [Shapeways;
dreamforge], toys [Makieworld Ltd.] and jewelry [Nervous Sys-
tem] either restrict customization to very simple changes, or do not
provide a guarantee that the customized objects are valid (e.g. sta-
ble, durable) and can truly be fabricated. Furthermore, building a
dedicated software application for every customizable design is not
scalable. A more general approach of putting a thin UI layer over
a parametric model, as in [MakerBot], results in a frustrating user
experience with no guarantee on the validity of the resulting model.

In this work, we define the requirements for a representation of an
end-user-customizable object in the notion of a Fab Form, and pro-
vide a method for creating such a representation from a general
parametric design. Formally, a Fab Form is a 3D design represen-
tation supporting:

1. Customization: intuitive controls for changing the design.
2. Validity: produces only functional fabricable models.
3. Interactivity: fast response to changing parameter values.

Our solution for creating Fab Forms is driven by one central as-
sumption – the number of parameters exposed to the end-user
should generally be low (typically 2-6). This goes in line with re-



cent psychological research stating that people like choices, but not
too many choices [Iyengar and Lepper 1999]. For example, a Fab
Form for a shoe could take as input the weight of the individual and
the desired comfort level in addition to the foot dimensions. From
the end-user perspective this assumption makes a lot of sense: users
want a few intuitive knobs that adjust the corresponding model in
a meaningful way. The underlying parametric models can, how-
ever, have a few orders of magnitude more degrees of freedom, and
arbitrarily complex geometry processing operations.

The assumption of the low-dimensional design space allows us to
develop mechanisms that guarantee interactive performance, while
providing customization and maintaining validity. We achieve this
by offloading expensive geometry generation and automatic valid-
ity checks into a precomputation stage, where we adaptively sample
the design space spanned by end-user-visible parameters and com-
pute an approximation for its valid regions. Note that while validity
verifications can be computationally expensive, storing their results
requires relatively little space. In addition, we efficiently precom-
pute the geometry for a Fab Form by taking advantage of partial
geometry evaluation and redundancy of geometric components in
the design space. We ensure an efficient sampling of the design
space by adaptive subdivision, taking into consideration changes of
the geometry and the boundary of the valid region approximation.

The contributions of this paper can be summarized as follows:
• Fab Form abstraction for representing customizable, manu-

facturable digital objects that can be evaluated interactively.
• Methods to map out and explore valid regions of low-

parameter design spaces for arbitrary automated validity tests.
• First hierarchical geometry caching approach optimized for

the design space as a whole.
• A method for converting parametric models to Fab Forms and

evaluation of this method on a number of real world examples.

2 Related Work

3D shape customization has been extensively studied in computer
graphics. Fast intuitive shape editing methods [Sorkine et al. 2004;
Jacobson et al. 2011; Gal et al. 2009; Kraevoy et al. 2008] as well
as assembly-based methods [Bokeloh et al. 2012; Chaudhuri et al.
2011] rely on maintaining low-level geometric constraints that pro-
duce visually pleasing and intuitive results. However, most of these
methods have targeted virtual models for rendering and therefore
can produce designs that are not valid for fabrication: deforma-
tion methods typically do not protect against self-intersections, and
all editing approaches may result in designs that are not functional
in a global sense (for instance, too fragile or unstable). Genera-
tive shape authoring methods [OpenSCAD; Shapeways 2014; Cut-
ler et al. 2002] suffer from the same limitation. Thus, a typical
shape customization loop for fabrication involves running time-
consuming checks after every design iteration, and often requires
a manual stage for correcting problems. Instead, the aim of our
work is to restrict design exploration only to valid designs.

In engineering, customizable design is typically represented as a
constrained parametric model produced by commercial CAD pack-
ages [Dassault Systèmes; Autodesk]. Although these tools are able
to constrain the design according to parametric and geometric con-
straints set by the designer, parameter manipulation of such models
is reserved for experts, who can detect and correct design prob-
lems, which range from unsatisfiable constraints to complex func-
tional failures. Simply determining ranges of parameters where
constraints are satisfiable is a known hard problem, and has only
been addressed analytically for a number of severely limited sce-
narios [Hoffmann and Kim 2001; Van der Meiden and Bronsvoort
2006; Hidalgo and Joan-Arinyo 2012]. In addition to low-level con-

straints, some previous work allows setting high-level topological
constraints on the realized design [van der Meiden and Bronsvoort
2007], or defining and maintaining semantic feature information
during parameter manipulation [Bidarra and Bronsvoort 2000], al-
beit that these methods heavily rely on their chosen sets of con-
straints. In robotics, a similar problem is encountered in motion
planning, when working with the robot configuration space (C-
space) [Lozano-Perez 1983]. Although these approaches also rely
on sampling, their goal is typically finding a path, not exploring the
entire space [Wise and Bowyer 2000], the aim of our work.

A digital design can fail during or after fabrication for a variety
of complex reasons. Algorithms for testing design robustness have
been developed for decades in the field of engineering (e.g. proba-
bilistic sensitivity analysis [Doubilet et al. 1984; Wu 1994]), and
have recently also caught the attention of the graphics community
with works such as computational structural analysis [Zhou et al.
2013], automatic correction for areas of high stress [Stava et al.
2012] and semi-automatic correction of model stability [Prévost
et al. 2013]. With the exception of fast approximate methods
such as [Umetani and Schmidt 2013], comprehensive checks of
model durability and functionality typically require costly simula-
tion, making them impractical during interactive customization.

Fast integrated design and analysis systems have been proposed for
limited design domains, such as furniture [Umetani et al. 2012] and
clothing [Umetani et al. 2011], where insights into the specifics
of the chosen domain allow for real-time checks. Common solu-
tions to speed up validity tests that are too computationally expen-
sive often rely on precomputation or data fitting. For example, Pan
et al. [2013] train a classifier to quickly estimate inter-penetration
depth between two rigid objects, and Umetani et al. [2014] derive a
compact model of a glider plane aerodynamic properties from data.
Our work is inspired by a more general case, placing no assump-
tions on the validity tests or the nature of the valid regions.

Guided exploration of the design space, while fulfilling some con-
straints, is important even when real-time validity tests are avail-
able (e.g. it may take many trials for the user to just find a valid
model in the space without any guidance), and has been addressed
for some domains. For example, Umetani et al. [2012] are able
to provide real-time exploration of only valid plank-based furniture
designs by operating in the force space specific to the requirements
on furniture designs, where the required checks are fast. Similarly,
Yang et al. [2011] propose a mathematical framework for exploring
desirable regions of the shape space for deformable meshes under
constraints, but their approach is restricted to quad meshes with
fixed topology and does not handle computationally intensive con-
straints. A related problem of design space exploration, guided by
soft metrics of desirability or user-imposed preferences, has been
addressed for a number of domains [Shapira et al. 2009; Talton
et al. 2009; Koyama et al. 2014]. For example, Talton et al. [2009]
use crowdsourcing to estimate the density of good 3D models in the
design space and help novices explore high-quality designs. Guid-
ing users toward better, more interesting designs is very different
from maintaining hard requirements on design validity. We explore
the problem of restricting design exploration to the strictly valid re-
gion of the design space with no limitations on the nature of the
design.

Fast preview is essential for interactive applications, but geometry
generation during customization can be computationally intensive.
Although fast preview methods are available for some classes of
geometric operations such as constructive solid geometry (CSG)
operations, others cannot be previewed in real time (e.g. procedu-
ral approaches, such as simulation-based shape authoring [Cutler
et al. 2002]). Typical representation of a parametric model is a
tree [Wyvill et al. 1999; Schmidt and Singh 2008] or linear con-



struction history. Lazy re-evaluation of geometric models is a stan-
dard feature of commercial CAD packages [Dassault Systèmes;
Autodesk] and smarter node-level caching techniques have been
proposed for some classes of geometric operations [Schmidt et al.
2005], but these techniques are not sufficient for interactive appli-
cations where a single user edit triggers a significant re-evaluation.
We propose the first precomputed hierarchical geometry cache op-
timized for interactively navigating the entire design space. In a
similar spirit, Kim et. al. [2013] precompute simulation-based sec-
ondary cloth effects offline to enable high-quality cloth simulation
as a character is animated interactively. In order to reduce observ-
able error, that work relies on a metric based on vertex-level cloth
deformations. Similarly, we propose using a metric on geometry
change to guide the sampling.

3 Method Overview

Constrained parametric design is one of the most common cus-
tomizable object representations. The input to our method is such
a parametric design along with a subset of end-user-visible param-
eters (designated by the designer), and an implementation of any
high-level test that is needed to check the validity of the design.
Using these, our method converts a design into a Fab Form repre-
sentation that is able to support interactive customization by casual
users, while producing only valid manufacturable models.

For a given design F , we denote the space of end-user-visible pa-
rameters by UF , allowing both discrete and continuous dimen-
sions. We assume UF to be low-dimensional with independent
dimensions (e.g., in the presence of constraints), but the underly-
ing parameterized design can have hundreds of interdependent vari-
ables, affected by the high-level exposed meta-parameters via con-
straints. For example, the vase in Table 1 has a three-dimensional
UF : a discrete parameter n for the number of sides, and contin-
uous parameters x and y for the coordinates of the middle control
point in the profile curve.

u ∈ UF G = g(u) WF (G)
n = 4
x, y = 1.7, 1.5

true

n = 7
x, y = 0.6, 2.7

true

n = 3
x, y = 2.6, 1.7

false

n = 3
x, y = 0, 5

false

UF =

{
n ∈ N>2

x, y ∈ R2

WF =


no intersect

is manifold

min thickness > t

Table 1: A parameterized vase design F with a three-dimensional
space of end-user-visible parameters UF is annotated with high-
level validity tests WF . These tests implicitly define UF , the valid
region of this design space. Realized designs are shown in the mid-
dle column (last design fails to generate geometry for the given
parameter settings), and the right column contains the test results.

We define g(u) ∈ G as the geometric model created for specific
parameter values u ∈ UF . Typically, the mapping g is realized as
follows: a constraint solver assigns values to low-level design pa-
rameters, which are then used to generate the actual 3D geometry
G (Table 1, 2nd column). This process can fail if the constraints are
unsatisfiable, or the low-level parameters are assigned invalid val-
ues (e.g., negative radius), or if the result is an unprintable geometry
(e.g., non-watertight mesh, very thin features). Finally, even manu-
facturable designs can have structural failures: a shoe may collapse

Figure 2: A Fab Form is a customizable object representation that
ensures design validity and is suitable for interactive applications.
In our representation, a user can only create designs for parameter
values u inside UF , the valid region of the design space.

under the weight of the wearer, a cup may not balance on a flat
surface. These failures result from complex interplay of variables,
constraints and physics, and often cannot be predicted analytically.

To restrict each customizable design only to its valid instantiations,
we use the implementation of the high-level tests WF : G →
{true, false} appropriate for this design. We assume a library
of such tests is given and demonstrate some in Sec. 4. These tests
implicitly define the valid region of the design space:

UF , {u|u ∈ UF ,WF (g(u)) = true} (1)

where we defineWF (g(u)) as false at values of u for which g(u)
fails to generate geometry. For example, the vase design in Table 1
is simply tested for 3D-printability (no self-intersections, manifold,
with minimum feature thickness above a threshold), but other de-
signs may call for more sophisticated tests such as structural analy-
sis using physical simulation.

Using WF , our method analyzes the input design and converts it
to an interactive Fab Form, that only produces designs in the valid
region UF (see Fig. 2). Note that even for moderately complex
designs, both geometry generation g(u) and validity testsWF can
be computationally expensive, inhibiting interactivity. To address
this, we split our method into an expensive offline precomputation
step and a fast runtime component.

During offline precomputation, we construct the valid region ap-
proximation by running automatic tests over designs sampled over
the design space UF , and also construct a geometry cache:

Offline Precomputation (Overview)
Input: parametric design and a set of testsWF

• Sample designs in UF
• Evaluate tests inWF for every sample (Sec. 5)
• Estimate the valid region UF where the tests pass
• Populate and optimize geometry cache (Sec. 6)

At runtime, we connect an auto-generated customization user inter-
face (UI) over the data structures generated offline. The valid region
representation confines the user to the valid region of the parameter
space, while the geometry cache enables fast preview:

Runtime Customization (Overview)
Input: parameter values u ∈ UF set by the end user

• Look up parts of the design in the geometry cache
• Evaluate geometry that has not been cached to generate preview
• Dynamically update validity bounds on the exposed parameters

The result is a responsive customizable model that supports an in-
terface protecting the casual user against design failures and pro-
viding interactive feedback. See overview in Fig. 3.

In the following section (Sec. 4), we present the design represen-
tation used in our system and compatible with our caching scheme



Figure 3: Method Overview:We sample the space spanned by end-user-visible parameters in a two-stage parallelized adaptive sampling
process. During sampling, we assemble a valid region representation and a hierarchical geometry cache. To conclude the offline processing,
the cache is pruned based on running time statistics and frequency of evaluation. Resulting data structures provide valid parameter ranges
and fast preview at runtime.

(Sec. 6). In Sec. 5, we present our method for sampling-based valid
region approximation that applies to a broader range of design rep-
resentations. Finally, Sec. 7 describes runtime interaction with our
precomputed data structures.

4 Design Representation

Our hierarchical design representation is derived from a number of
existing approaches, such as CAD models [Bettig and Hoffmann
2011], BlobTrees [Wyvill et al. 1999], and Surface Trees [Schmidt
and Singh 2008]. We represent a design F as one or more trees of
operation nodesN1 . . . Nk (see Fig. 4), where the leaves of the trees
generate geometry, and every internal (and root) node encapsulates
some parameterized geometry-processing operation acting on the
output of its child nodes. The end result of a tree evaluation is the
geometric model produced by the root node.

UF =

{
jaggedness

king height

CF =



N3.n sides ∝ jaggedness

N3.tension ∝ jaggedness

N2.y ∝ king height

N2.pt5.y...pt8.y ∝
king height

Figure 4: The tree representation of a chess pawn in our system
(part of the chess set in Table 2). The leaf nodes N1 and N3 gener-
ate geometry which is merged and modified by the internal nodes.
The value of every node’s mutable parameters (red) is controlled by
the exposed parameters u ∈ UF via constraints CF .

Each node has a number of parameters (boolean, real, or integer),
marked as mutable or fixed. We allow any of the parameters, in-
cluding auxiliary meta-parameters, to be linked by linear and non-
linear constraints. Only a few of these parameters are marked as
end-user-visible, but these typically affect all the mutable parame-
ters via constraints (e.g. the pawn in Fig. 4 has 7 mutable param-
eters governed by only two exposed meta-parameters). Each node
re-evaluates its geometry only if some parameters in its subtree have
changed. This allows caching of geometry at the subtree level (see
Sec. 6).

Each design is annotated with automated tests WF . A number of

methods for testing a digital design against failure have been sug-
gested (see Sec. 2). We experimented with the following tests:
• satisfiability of constraints,
• watertightness of the geometry for 3D printing,
• object balancing on a flat surface,
• no excessively thin features,
• volume of the material (see Precomputed properties below),
• physical simulation to detect significant deformations in an

object under load.

We found that even this small set of tests is quite powerful for man-
ufacturing and customization, but more sophisticated tests can also
be used with our method (e.g. [Zhou et al. 2013]).

Precomputed properties: Some of the tests may depend on thresh-
olds provided only at runtime. For example, we would like to allow
users to set a limit on the maximum material volume (and conse-
quently, the printing cost) at runtime, or to display these estimates
during customization. To this end, we annotate each design with
properties PF to be precomputed (in our example, material vol-
ume), in addition to the boolean tests.

5 Sampling the Design Space

During the precomputation stage for every design, we sample the
design space UF with three goals in mind:

obj1 Estimate the shape of the valid region UF
obj2 Precompute design properties PF
obj3 Build up the geometry cache (Sec. 6)

For every sample point, we run the constraint solver, evaluate the
design tree treeF to obtain 3D geometry, run the automated valid-
ity testsWF , and if the design is valid – evaluate propertiesPF and
populate the geometry cache with the geometry evaluated at some
nodes of treeF . See Alg. 2 in the Appendix for formal definition
of the EvaluateSample procedure.

We bootstrap adaptive sampling by uniformly sampling UF inside
the region bounded by the rough ranges set on the exposed parame-
ters by the designer. This step is necessary because the initial rough
bounds can fall outside of the valid region, causing adaptive sam-
pling to return an empty approximation. In practice, we found that
about 5-7 subdivisions per dimension are sufficient for bootstrap-
ping. Altogether, the offline precomputation runs in three stages
(see Fig. 3), where steps 1 and 2 are executed in parallel:



Figure 5: A k-d tree KF used to estimate and represent the valid
region of the design space spanned by parameters u1...un. Every
leaf is a hypercube with a computed sample (shown in green) at
every vertex.

Offline Precomputation
Input: a parametric design annotated with testsWF
Outputs: a k-d tree for the valid regionUF and a geometry cache

1. Uniform sampling:
• sample UF over a uniform grid
• run EvaluateSample on every sample

2. Adaptive sampling:
• adaptively subdivide each grid cell
• run EvaluateSample on every sample

3. Optimize the geometry cache (Sec. 6)

5.1 Valid Region Representation

As we sample the design space UF , we construct a k-d tree-based
representation [Bentley 1975] KF that approximates the valid re-
gion UF of this space. In contrast to a classic k-d tree, where each
leaf holds a number of existing samples, every leaf of our tree KF
corresponds to an undivided hypercube in UF , with a sample at
every vertex (see Fig. 5). At runtime, this representation enables
efficient lookup of the valid region boundary (Sec. 7.2) and sup-
ports fast preview (Sec. 7.3).

In practice, we construct multiple k-d trees, one for every cell of the
uniform sample grid used for bootstrapping. For clarity of discus-
sion, we will assume a single k-d tree.

5.2 Adaptive Sampling

Euclidean distance in the design space has little correlation with
the quantifiable changes in the realized designs (see Fig. 6). To
overcome this, we propose an adaptive sampling scheme. Follow-
ing the three objectives of sampling, we would like to sample most
densely close to the boundary of the current valid region approx-
imation (obj1), in the direction where properties are changing the
most (obj2), and in the direction where the geometry is changing
the most (obj3).

We propose a scale-invariant metric ∆G that satisfies all three ob-
jectives, under the assumption that the rate of change of properties
is correlated with the change in geometry. Let V(G) map the ge-
ometry G to its volumetric representation, and let |V(G)| denote
the scalar volume measure of this representation. We define the
change ∆G between two sample points u1 and u2 that evaluate to
geometries G1 and G2 as:

∆G(u1,u2) ,
|V(G1)⊕ V(G2)|
|V(G1)

⋃
V(G2)| (2)

where ⊕ is the symmetric difference (XOR) in volumes. It can be
shown that ∆G is a metric (see Supplemental Material), with val-
ues ranging between 0 and 1. Our convention is that samples where

Figure 6: Pitfalls of uniform sampling: Although the samples
are uniformly spaced in this 2-parameter design domain, the de-
sign changes much more in the x-direction. The ∆G metric (green)
evaluated between adjacent samples quantifies this perception well,
motivating our adaptive sampling approach.

Figure 7: Adaptive sampling: To pick the best split direction, we
compute ∆G metric along all edges of a hypercube in the design
space, picking the direction of largest change using a stacked score
vector s for every dimension ui.

any validity check fails have zero volume. Thus, ∆G between two
invalid samples is zero, and ∆G between a valid and an invalid
sample is 1. Although this metric would be crude for vastly dis-
parate geometries, we find that it quantifies geometric changes well
for instances of a parametric design (see Fig. 6).

We use ∆G to find the optimal split direction for every leaf hyper-
cube in KF , and create new samples where the splitting plane cuts
the edges. For every possible split direction ui, we evaluate ∆G on
all edges along that directions, sort these values and stack them in a
vector s(ui) (see Fig. 7). We pick the best direction by sorting vec-
tors s(ui) (breaking ties using lexicographic order). Subdivision
continues until a maximum depth is reached or until the maximum
∆G in a hypercube is below a certain threshold. Not all dimensions
of UF are continuous, and special care needs to be taken during
subdivision. In particular, if a discrete dimension cannot be split
further, we split along the second ranked dimension.

Although the running time of split determination is O(2n), where
n is the dimensionality of the design space, we found that the run-
ning time is feasible under our original assumption that n is small.
Because computation of ∆G is quite costly, we cache the results of
this computation, and also use ∆G at runtime to define distances
inside the design space (see Sec. 7.3).

6 Geometry Cache

Generating geometry based on the user-specified parameters can
be computationally expensive. Even if expedited preview meth-



ods are available for some geometric nodes (e.g. CSG operations
can be previewed quickly even when creating the actual mesh is
time-consuming), we consider the general case, where any geome-
try processing operation can occur in the nodes of the geometry tree
(e.g. the box example in Table 2 uses high-resolution fluid simula-
tion for generating part of the geometry). In order to provide timely
preview during customization, we snap to the precomputed sample
closest to the current parameter values (Sec. 7.3). This allows us to
pre-populate the geometry cache during sampling (Sec. 5).

6.1 Design-Space Caching

A naive cache would simply store top-level geometry for every
valid sample. However, offline sampling of the entire design space
creates a unique opportunity to optimize geometry generation for
the design space as a whole. There are many approaches that could
be applied, such as rearranging the trees of operations, as well as
library-specific optimizations and parallelization. We consider a
simple approach of caching 3D geometry at the subtree level. The
intuition is that certain subtrees of the design are reused throughout
the design space and 3D geometry produced by them can be cached.

During sampling, we liberally store the 3D geometry produced by
all subtrees where the root node took non-negligible time to com-
pute (otherwise, we could just cache the children). The goal of
cache optimization is to select a subset of these subtrees to opti-
mize the time to generate preview across the entire design space
under some constraint on the memory, or the converse. We next
formally set up this problem.

6.2 Cache Optimization Problem Formulation

The geometry output by a node is determined by its subtree, which
is uniquely identified by its topology τ , and the values ρ of the low-
level parameters in all of its nodes. A subtree keyed by (τ, ρ) can be
evaluated for many different values of end-user-visible parameters.
During sampling, we keep track of the average computation time ti
required by the root of every subtree Xi (this is different from the
average compute time at every unique node of the design tree, as
compute time in the parent node often depends on the results of its
children).

When the sampling is complete, we construct a dependency graph
between all the subtrees evaluated during sampling, where an edge
from node X to node Y signifies that root of subtree X requires
the result of subtree Y . Fig. 8 shows such a dependency graph for
a 2-piece chess design evaluated at two samples. Each evaluated
sample corresponds to a special root node of the graph.

This graph representation prevents us from introducing redundan-
cies into the subtree cache. In addition, it allows easy estimates
of the expected and maximum time to evaluate a sample given dif-
ferent cache configurations H . To find the total computation time
TH(r) for a sample corresponding to the root r of the graph, we
simply sum up t values while running a breadth-first traversal of
the children starting at r, where traversal terminates at the nodes
that are in H . We use nH(X) to denote the number of evaluations
for the root of subtreeX across all the samples in the design space,
given cache H . To find nH(X) for a node X , we sum up recur-
sively computed nH(pi) for all of its parents pi that are not in H ,
where n at the roots of the graph is set to 1. Any node with all of
its parents in the cache is redundant.

As a crude approximation to actual probability of reaching a given
part of the design space during customization, we assume that snap-
ping to any of the precomputed samples for preview during cus-
tomization is equally likely. Thus, for a given cache H , the ex-

Figure 8: Design with two chess figures evaluated at two samples
u1 and u2, and the resulting dependency graph between geometry-
generating subtrees. Each node represents geometry evaluated by
the root of its subtree (red), and requires geometry from its chil-
dren. This graph prevents us from introducing redundancies into
the optimized cache. Notice that the subtree E is evaluated twice
for sample u1, and subtree H is evaluated four times overall.

pected preview time is:

EH [preview time] =

Σ
ri∈R

TH(ri)

|R| =

Σ
Xi∈N

ti · nH(Xi)

|R| (3)

where R is the set of all samples in the dependency graph, and
N is all the nodes. Our approach could be modified to use actual
usage statistics. Finding the set of cached nodes to minimize e.g.
EH [preview time] across all roots given a constraint on memory
can be formulated as an integer linear program, which is known to
be NP-hard [Garey and Johnson 1979]. As an approximation, we
explore a heuristic hill climbing algorithm for greedily selecting
nodes to include in the cache.

6.3 Hill Climbing for Cache Optimization

We found that a hill climbing approach reducing expected preview
time alone results in a sub-optimal user experience, as few very
slow updates completely destroy the effect of interactivity. Instead,
we employ a hill climbing approach that selects the next node to
cache, such that it most reduces the average preview time, while
also reducing the worst update time by any amount (see Alg. 1).

Algorithm 1 Cache Optimization

H ← { }
while not termination condition do

rootsmax ← graph roots with maximum T (.)
Xmax ← descendant node of rootsmax with

maximal ti · nH(Xi)
add Xmax to H
remove any children of Xmax that have become redundant

In practice, this results in the same average preview time for a given
cache size, while preferentially reducing the worst preview time



(see Fig. 13). The space-efficiency of our algorithm gracefully de-
grades to naive solution and automatically exploits decoupled de-
grees of freedom in the design. We discuss its strengths and limita-
tions in Sec. 8.

7 Runtime Customization

7.1 Automatic Generation of the Customization UI

Figure 9: An automatically created Web App, supported by the
back end Fab Form representation created using our approach. The
valid slider intervals (blue) adjust automatically based on the cur-
rent position u in the design space, and interactive preview is gen-
erated using the geometry cache (this example requires costly fluid
simulation to create surfaces of different “storminess”, but not all
settings result in printable geometry).

The motivation behind Fab Forms is to enable interactive cus-
tomization applications (recall Fig. 2). To demonstrate the useful-
ness of our data structures in this original context, we have built an
engine that automatically creates a customization UI for Fab Forms
constructed using our system (e.g., Fig. 9). Using the k-d tree rep-
resentation of the design space, the interface confines the user to
its valid region (Sec. 7.2). When a parameter value is changed, the
valid ranges of the other parameters adjust automatically providing
a guarantee on design validity. The geometry cache is used to gener-
ate fast preview (Sec. 7.3). Our UI engine is implemented as a Web
App in HTML/javascript with WebGL support, and a C++ back end
that performs validity lookup and geometry generation. Note that
with this architecture all precomputed data structures are stored in
the cloud, making this setting especially attractive for novice users.

7.2 Local Validity Ranges

We take a conservative approach and define the valid region UF
of the design space as the union of all leaf hypercubes in the k-d
tree (see Sec. 5.1) with samples at all vertices marked as valid (e.g.
Fig. 10). Thus, any point u is considered valid if it lies inside a
valid hypercube, or on an all-valid face or edge.

Given user-provided parameter vector u, we use the k-d tree to find
the valid ranges for all the other parameters in order to restrict the
UI to only the valid design regions (accessible slider ranges shown
in blue in Fig. 9). Note that the valid intervals are different for
different values of u. We also observed that simply finding the
maximum and minimum bounds on each parameter around u is
insufficient, as the shape of the valid region is often non-convex.
To find valid intervals along a given design dimension ūi, we trace
a line through u along ūi and evaluate validity of all the cuts made
along that direction during sampling (a small number in practice),

Figure 10: Left: finding valid parameter ranges around current
point in the design space u, using our k-d tree representation.
Right: visualization of the actual estimated valid region (blue) for
the Yin Yang Cup 1 (see Table 2) and valid intervals for two different
values of u.

as well as points between cuts to ensure contiguous valid regions
(see Fig. 10 for all considered points along a given dimension).

Because validity lookup operates on the raw k-d tree of samples
with no post-processing of the valid regions, the shape of the valid
region can be changed quickly at runtime if the user sets new thresh-
olds on some of the computed properties PF (e.g. material volume
in our case). We reserve exploration of this for future work, but use
precomputed material volume property to provide live updates on
the model cost and weight in different materials.

7.3 3D Model Preview Generation

We provide an interactive preview of the customized object by map-
ping the current point in the design space to the closest valid sam-
ple, running constraint solver (fast) to set low-level parameters of
the design tree (Sec. 4) and loading cached geometry subtrees to
expedite evaluation (Sec. 6). We first find the leaf hypercube con-
taining the user-set parameter values u, and then snap to the clos-
est valid vertex for preview, using a linear approximation of the
distance inside the hypercube based on the ∆G values computed
along all of its edges during sampling. Snapping to a pre-computed
vertex ensures high number of cache hits, resulting in faster render-
ing (see Sec. 6). This approach works, because adaptive sampling
based on ∆G metric, generates more samples where geometry is
changing the most. In practice, this preview creates an impression
of continuously changing parameters, with only occasional jumps
in model appearance. Feedback we received during our user study
(see Sec. 8) indicated this as only a minor problem. Of course, if
exact specification is important, the final model for fabrication can
be computed at non-interactive rates using exact parameter values.

7.4 Navigating the Valid Region

Experimenting with several example designs (Table 2) revealed that
it is quite easy to create designs where the volume of the valid re-
gion UF is very small, for instance, by setting overly strict con-
straints. When this happens, it may be difficult to reach all the valid
segments of the design space using simple sliders (e.g. Fig. 11).
Making sparse, non-convex regions of a multi-dimensional design
space navigable is a rich topic of future investigation. To start ad-
dressing this problem, we generate customization starting points
that allow users to jump to several points in UF by clicking on a
preview, without the use of sliders. The problem of constructing
exemplars for navigating parameter spaces has been addressed by
Marks et. al. [1997], but not with the additional constraint of valid-
ity. We suggest a simple way to reuse results of our precomputation
to accomplish this without any additional sampling or expensive
computation, as in the prior work [Marks et al. 1997].

In order to generate starting points, we construct a graph from all



Figure 11: Example of difficult navigation: For some examples,
even large valid regions(blue) may be difficult to reach using valid
sliders around the current parameter setting u.

Figure 12: Design starting points: Valid graph components ob-
tained using our method. Centers of the component graphs (right)
are provided as starting points for the valid region exploration.

the valid samples in the k-d treeKF (Sec. 5), and create an edge be-
tween any two valid samples in a leaf hypercube, with edge weight
set to ∆G already evaluated during precomputation. For our ex-
amples, even spaces with very low valid volume typically result
in graphs with only one large connected component. To get de-
sign starting points, we run randomized farthest point sampling us-
ing graph distance to segment graph into components (see graph in
Fig. 12). The graph centroid of each component is then chosen as
the design starting point (see design variants in Fig. 12 correspond-
ing to subgraphs of the same color). The design variations shown
in Table 2 are chosen using this method.

8 Results and Discussion

Designs: To test our approach, we designed 8 parameterized mod-
els (Table 2), and used our method to convert these designs to in-
teractive Fab Forms. Our design trees had from 7 to 100 geomet-
ric nodes (Sec. 4). The nodes included CSG operations (all mod-
els), basic 3D primitives (most models), OpenScad scripts (wheel
and handle in car and cup 2, respectively), surfaces of “revolution”
with a polygonal base (chess, vase), extruded curves (sandal), a
C++ procedure for generating arc-length-parameterized tentacles of
unioned spheres (tea light holder, sandal), high-resolution fluid sim-
ulation followed by thickening and meshing (box), and imported
meshes (horse head in chess set). Although the number of exposed
parameters varied from 2 (chess) to 6 (vase), the total number of
mutable parameters in the designs ranged between 6 and 68, and
was controlled by 2 to 55 linear and non-linear constraints. Each
parameterized design was annotated with a set of automatic tests,
and properties to be computed:
• All designs: constraint satisfiability, watertight geometry, and

material volume property
• Cup 1, Cup 2: balancing on a flat surface
• Box: no very thin parts1

• Sandal: physical simulation with weight distributed over the

1Approximated using shape diameter function [Shapira et al. 2008]

Design Info Design Starting Points (see 7.4)

CHESS SET
102 tree nodes
56 mutable parameters
55 constraints
2 exposed parameters

OCEAN BOX
14 tree nodes
10 mutable parameters
8 constraints
2 exposed parameters

YIN YANG CUP 1
19 tree nodes
9 mutable parameters
7 constraints
3 exposed parameters
YIN YANG CUP 2
20 tree nodes
10 mutable parameters
7 constraints
3 exposed parameters
PLATFORM SANDAL
28 tree nodes
68 mutable parameters
65 constraints
3 exposed parameters

TOY CAR
20 tree nodes
19 mutable parameters
25 constraints
4 exposed parameters

TEA LIGHT HOLDER (TLH)
7 tree nodes
6 mutable parameters
2 constraints
4 exposed parameters

HOLEY VASE
17 tree nodes
12 mutable parameters
7 constraints
6 exposed parameters

Table 2: Parametric designs converted to Fab Forms by our system.

sole of the sandal to detect significant deformations2

Precomputation: For every design, we ran the precomputation
stage distributed over 10-40 custom cores on Amazon Web Ser-
vices (AWS) [Amazon]. Table 3 lists CPU time aggregated across
all cores. Even for this relatively small number of cores, distributed
sampling took less than a day for most models. This is roughly
the time (and price) of 3D printing a few examples, a small cost,
given the benefits of allowing thousands of users to customize these
models. As expected, the computation time depended most not on
the complexity of the model, but on the dimensionality of the de-

2We used finite element simulation for statics with hexahedral finite ele-
ments and Neo-hookean material model.



sign space, and our 6 and 4-dimensional designs took the longest
to compute. An area of future work is coming up with a sampling
approach that is not limited to low-dimensional parametric designs.

F |UF | Samples CPU time % Valid Failure types

Chess 2 174 11.9 hrs 100% None

Box 2 420 1.0 days 74% 2% geometric

98% thin parts

Cup 1 3 2,993 2.6 days 29% 89% unsat. constraints

11% geometric

0% unstable

Cup 2 3 2,774 3.4 days 43% 24% unsat. constraints

11% geometric

64% unstable

Sandal 3 1,996 7.4 days 45% 28% unsat. constraints

49% geometric

23% too much deformation

Car 4 22,147 18.6 days 3.0% 11% unsat. constraints

89% geometric

TLH 4 2,402 22.1 days 100% None

Vase 6 145,337 138.6 days 6.5% 77% unsat. constraints

23% geometric

Table 3: Information about the precomputed valid regions of the
design spaces for the examples in Table 2. All precomputation times
were obtained on m1.medium AWS instances, except for the san-
dal and box models which ran on m3.xlarge instances due to the
demands of physical simulation.

Valid Region Analysis: We compute valid volume percent of the
design space as the n-dimensional volume (product of lengths in all
dimensions) of all hypercubes with all vertices marked as valid di-
vided by the total volume of the bounded space (see Table 3). This
measure is conservative, and even a space with zero valid volume
may have large planes of valid samples. Thus, in practice, we are
able to explore large regions of the Car and Vase design using slid-
ers, although their valid region volumes are only 3.0% and 6.5%,
respectively.

For some designs (chess and TLH), the entire design space was
valid, but for other designs automatic testing during precomputa-
tion was able to detect a large number of failures that would have
made customization cumbersome, at best. For most models, large
percentage of the failures resulted from regions of the space having
unsatisfiable constraints. This is a common problem faced by me-
chanical engineers using CAD software, so there is no surprise that
these kinds of errors would surface after methodical sampling of the
entire design space. Furthermore, we were able to detect unprint-
able geometry, resulting from geometry processing. Such errors
are also common when editing a 3D model by hand, and preventing
these errors is important for customizing objects for 3D-printing.

We found that even for similar designs, the distribution of errors
varied. For instance, we created two cup designs to investigate how
the valid regions change. In Cup 1, there were several tricky and
occasionally conflicting constraints governing the angle and posi-
tion of the handle, which resulted in 89% of all failures. On the
other hand, Cup 2 had a large handle that made the stability test
dominate the failure cases. These distributions can also give the
designer insight into his design, possibly prompting changes. In
the Sandal design, we were able to detect configurations of the
heel that resulted in too much deformation when bearing a person’s
weight. We printed one such failed design and confirmed that it
breaks under normal usage conditions. Such high-level failures are

especially difficult to guard against during customization without
our approach.

Cache Optimization: In Fig. 13, we compare three hill-climbing
strategies for selecting subtrees to leave in the cache for two of
our designs. We plot EH [preview time] (Eq. 3) and maximum
preview time (Tmax

H (.)) across all sample points (see Sec. 6.2).
The naive approach (red dash) simply picks nodes with the largest
ti · n, where n is the number of subtree evaluations during sam-
pling. Because it does not take into account dependencies between
subtree evaluations, the naive approach can introduce redundan-
cies into the cache, and tends to provide the worst improvement
in EH [preview time] for a given cache size. The OPT-AVE ap-
proach, picks subtrees with the highest ti ·nH(Xi), where nH(Xi),
the evaluation count of the subtree, is updated based on the current
state of the cache, and all redundant subtrees are removed as soon
as they become redundant. The OPT-MAX approach is described in
Sec. 6.3, and we found that while it reduces EH [preview time] at
about the same rate relative to the cache size as OPT-AVE (compare
blue and purple curves in Fig. 13), it also preferentially reduces the
maximum preview time (notice that light blue curve for Tmax

H (.)
using OPT-MAX is much lower than the lilac curve of the OPT-
AVE approach). This results in less variation in preview time, and
better perceived user experience.

(a) Sandal (b) Chess
Figure 13: We compare maximum (red, purple, blue) and average
(pink, lilac, light blue) estimated preview times for cache configura-
tions selected using three different hill-climbing strategies for chess
and sandal designs.

Subtree cache vs. top-level geometry cache: The motivation for
caching subtrees as opposed to final design geometry at every valid
sample (we refer to this as top-level cache HTOP ) is the intuition
that certain computationally expensive geometric parts are reused
throughout the design space. Thus, this strategy is most space-
efficient when the design has decoupled degrees of freedom, and
in the worst case approaches the memory footprint of the top-level
cache. Indeed, even if we run OPT-MAX until all non-redundant
subtrees have been cached, this full redundancy-free cache config-
uration Hrfree is only a fraction of HTOP for some of the designs,
in particular car, box and vase show 6x, 10x and 75x reduction in
storage, respectively (see Fig. 14). In some of the other examples,
even though there is redundancy in the internal subtree nodes, top
level nodes themselves are computationally intensive and result in
caching of top-level geometry despite the redundancy (e.g. in the
shoe design the last union node takes as long as several seconds,
and thus its Hrfree size is nearly equivalent to HTOP ). We hy-
pothesize that to take full advantage of hierarchical caching, the
cache must also store precomputed data structures to make up-
stream nodes faster.

Performance Evaluation: Due to the nature of our designs, and
cost of our nodes we found that it was difficult to achieve sub-
second preview times without caching the full Hrfree, but we also
experimented with setting the memory threshold lower (see Hopt



F HTOP Hopt Hrfree tnocache topt trfree

Chess 366MB 330MB 345MB 9.4s 0.330s 0.043s
Box 1.48GB 100MB 145MB 10.6s 0.280s 0.013s
Cup 1 178MB 40MB 45MB 0.520s 0.420s 0.420s
Cup 2 663MB 400MB 645MB 0.820s 0.335s 0.011s
Sandal 980MB 650MB 968MB 5.2s 1.2s 0.210s
Car 17.1GB 770MB 2.6GB 17s 0.080s 0.086s
TLH 17.0GB 13GB 13.6GB 50s 1.0s 0.413s
Vase 14.8GB 150MB 196MB 3.0s 3.0s 0.058s

Figure 14: Actual time to compute preview across 200 design
points in each design in Table 2: tnocache - time when there is no
cache, trfree - time with full redundancy-free cache Hrfree, topt
- time using slightly smaller cache Hopt. The HTOP reflects the
storage requirements for storing just the top level geometry at every
design sample, without the subtree-based caching scheme. We also
plot distributions underlying these averages as box plots above.

in Fig 14). We computed actual time to get preview for 200 sam-
ples randomly drawn from the valid region of each design in three
regimes – without cache, withHopt and withHrfree, obtaining av-
erage times tnocache, topt and trfree, respectively (see Fig. 14). To
visualize the spread of preview times, we also graph the times for
the most computationally intensive designs as box plots for all three
cache configurations (Fig. 14). It is clear that without caching in-
teractive customization of most of these designs is not possible. For
example, TLH takes on average 50 seconds to generate, and toy car
takes 17 seconds. Such long preview times without caching could
partially be blamed on our choice of geometry processing libraries
that are not fully optimal. However, even for the most optimized
geometry processing implementations there are many examples of
models that cannot be evaluated in real time. For instance, the box
example incorporates a high-resolution fluid simulation to gener-
ate the geometry. Our caching and preview approach is agnostic
to the geometry generation procedure used, and therefore works as
well on these examples as on any other. Our method results in sub-
500ms preview time with Hrfree, which we found quite sufficient
for customization interfaces in our user study.

User Study: To show that our Fab Form representation can sup-
port a practical interactive interface, we conducted a small-scale
user study with 12 participants, 6 of whom have never prepared a
model for 3D-printing. Each participant was assigned two random
designs chosen from Table 2 and a printout of a random goal model
for each design, randomly sampled from its valid region. We gave
each participant a 30-second primer on our automatically generated
interface (Sec. 7.1), and timed how long it took them to reach a
design closely resembling the goal. For 23 out of 24 task-based
trials, the users succeeded in reaching the goal within a mean of 2
minutes and 2 seconds (stdev=82 seconds), and performed on av-
erage 12 slider manipulations (stdev=7.3), defined as moving the
slider followed by releasing it. The failed task occurred on the 6-
dimensional Vase example, where the design space was harder to

navigate with sliders.

Figure 15: Models customized by our participants during freeform
part of the user study.

In addition, we gave each user a choice of a third design and asked
them to create a model they would most like to print (see results
in Fig. 15). We aggregated a post-study survey and subjective com-
ments. Most users found sliders with black regions easy to interpret
and work with, but a few were puzzled about the cause of the fail-
ures and expected more feedback. For higher dimensional spaces,
users reported that it is sometimes difficult to navigate the space,
such as when a particular desired value of one parameter is not
reachable for the values of the other currently set parameters, and
reported that quick designs helped navigate the space of possibili-
ties. Several users suggested that quicker preview would be better,
but most agreed that the current speed did not hinder interaction.
We only received very minor comments about occasionally large
jumps in the design appearance and other artifacts of snap-based
preview (Sec. 7.3). It is, therefore, a viable way to provide fast
feedback for designs requiring precomputation.

For completeness, we ran a qualitative test to compare against
Thingiverse Customizer [MakerBot] by uploading leaf OpenSCAD
nodes from our examples (wheel from the car and tentacle from
TLH). Customizer provides a thin Web UI layer for [OpenSCAD]
scripts, relying on fast preview available for some classes of op-
erations, and does not support constraints or validity checks. De-
spite these missing features, interactive Customizer experience was
significantly inferior to our prototype: no continuous model up-
dates (update only after slider release with 1-3s delay), no printing
cost/weight estimates, no interactive viewing at any angle, and there
was a long wait on obtaining the actual 3D model.

3D Prints: To fully validate our system, we 3D-printed a number of
objects customized using our system (Fig. 16, Fig. 1). No additional
tests were performed before forwarding the models to the printer.

Limitations and Future Work: Our method samples low-
dimensional design spaces to construct a valid region approxima-
tion, assuming that it can be mapped through sampling. Patholog-
ical cases could be constructed, where this assumption fails (e.g.
if the result of validity test is a flip of a coin). In future work,
we would like to develop methods for estimating confidence in our
valid region approximation, and to extend its mapping to higher-
dimensional design spaces. Our caching approach is agnostic to
fast preview available for certain geometry processing operations,
and a more space efficient approach treating preview time and ge-
ometry generation time differently could be developed. Our offline
method is currently used as a post-processing step after designing a
traditional parameterized model. Tools for directly authoring cus-
tomizable designs constitute a rich and challenging research topic,
where we hope our work might be useful.

Conclusion

We presented an approach for converting any parametric design
with a small number of exposed parameters into an end-user-
customizable representation, allowing for interactive customization
while guaranteeing validity. Our method supports any parameter-
ized geometry generation methods, and allows guarding the user in



(a) chess (b) cup 1 (c) car (d) TLH (and shadows) (e) vase

Figure 16: Sample 3D prints for designs customized with our system.

real time against any kind of high-level failure that can be tested
for automatically, regardless of the computational cost. We have
shown this representation to be practical for automatically creating
customization applications for casual users.
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Appendix

Evaluate Sample Procedure

The procedure executed for every evaluated sample during precom-
putation (Sec. 5) is listed in Alg 2.

Algorithm 2 EvaluateSample(u)

1: fix exposed parameters at u
2: solution← run constraint solver
3: properties[u]← {constraints ok : ∃ solution}

4: if no solution then
5: validity[u]← false
6: else
7: set parameters in treeF to solution
8: load stale subtrees of treeF from GeometryCache
9: G← evaluate treeF

10: all tests passed← true
11: for test wi inWF do
12: passed← wi(G)
13: properties[u]← {wi.name : passed}
14: all tests passed← all tests passed ∧ passed

15: validity[u]← all tests passed

16: if all tests passed then
17: populate GeometryCache with subrees of treeF
18: for property pi in PF do
19: properties[u]← {pi.name : pi(G)}
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