
Rasterized Image Databases with LSH for Compression

Zoya Bylinskii
MIT CSAIL

Maria Shugrina
MIT CSAIL

Andrew Spielberg
MIT CSAIL

Wei Zhao
MIT CSAIL

ABSTRACT
We present a novel strategy for patch-based lossy compres-
sion which exploits the inevitable redundancy found in large
image collections. We describe a scalable PostgreSQL-based
implementation leveraging the indexing infrastructure found
in relational database management systems (DBMS). We
decompose images into sets of patches which we define to be
small contiguous subregions of images. Since many image
textures (e.g. sky, ocean, forest, walls, etc.) are ubiquitous
in image datasets, rather than store all the information of
these patches for every image, we only store pointers to ap-
proximating patches in a patch dictionary. This dictionary
is grown in an online fashion as new images are added. New
patches are added to the dictionary when no similar-enough
patch can currently be found in the database under our cho-
sen patch distance function. In order to efficiently retrieve
patches from our database, we make use of locality-sensitive
hashing and a number of key optimizations. We analytically
compute the savings of our compression scheme, and exper-
imentally demonstrate its performance over various image
categories of the large SUN 2012 database. Finally, we pro-
vide subjective and quantitative evaluations of our compres-
sion quality.

1. INTRODUCTION
Large collections of images are ubiquitous in the modern

digital world. According to one 2014 Internet Trends report,
more than 1.8 billion images are uploaded to the internet ev-
ery day [7]. Our work is inspired by the intuition that there
must be a lot of redundancy in large image collections, and
that this redundancy could be exploited for more efficient
storage and for applications such as duplicate detection.

We focus on image redundancy on the patch level, as-
suming that large collections of images must have many
patches which are nearly the same. Our goal is to store
a set of images as a database of similar patches, where sim-
ilar patches may be shared between images, such that we

minimize the storage space while maintaining certain qual-
ity of reconstructed images. In effect, this results in lossy
compression. More concretely, we aim to choose a patch
distance criterion, matching and reconstruction algorithms
such that:

• the database size is smaller than if full images were
stored

• the images can be reconstructed from the database in
real time

• the reconstructed images fulfill certain quality require-
ments (see sec. 6)

These goals introduce a number of tradeoffs, such as size of
the database versus image quality. The goal of this paper
is as much to produce a working system as to build up the
analytical foundations that allow making these tradeoffs.

Section 2 covers some related work on image compression,
raster databases, and patch-based computer vision applica-
tions. In section 3, we explain our method of “patchify-
ing” images, storing them in a database, and reconstruct-
ing stored images. In section 4 we discuss how we accom-
plish the fast retrieval of similar patches via locality sensitive
hashing (LSH), which is crucial to the feasibility of our sys-
tem. In section 5 we discuss other important database opti-
mizations required for performance. In section 6, we provide
the analytical groundwork for selecting optimal image patch
sizes, distance thresholds, and quality metrics appropriate
for evaluation. Finally, in sections 7 and 8, we quantita-
tively and qualitatively evaluate our full working system on
real data, using the analytical tools developed from the pre-
vious section. In addition, in section 9, we briefly touch on
applications that derive naturally from a patch database,
including similar image retrieval and duplicate detection, as
well as a fun photomosaic application. We conclude by dis-
cussing future extensions.

2. RELATED WORK
Lossless image compression techniques like area coding or

Huffman coding give quality guarantees but do not always
give sufficient savings (especially for unstructured images).
Lossy image compression algorithms, on the other hand, are
quite popular and used for most applications dealing with
natural images, including storage of image datasets, and
web transmission. Often, lossy compression depends on a
quantization of image regions (e.g. all pixels in a block of
the image receive the same color value). For instance, the
JPEG compression standard partitions an image into non

1

overlapping blocks and applies a discrete cosine transform
to each block, quantizing the resulting coefficients. Fractal
compression techniques [5] apply an iterative algorithm to
encode images as fractal codes, capable of representing dif-
ferent parts of the images at different levels of detail. This
algorithm makes use of self-similarities and is computation-
ally expensive. However, due to fast decoding, it can be
used for file downloads. All of these approaches, however,
operate on a within-image basis, compressing an image us-
ing either a pre-specified dictionary (quantization) or us-
ing within-image similarity. Thus, these approaches provide
constant savings for image databases of arbitrary sizes.

In the age of big data, when the amount of images in
image collections grows at enormous rates, a compression
scheme that scales with the database size seems most ap-
propriate. Thus, we are interested in compression schemes
that take into account across-image redundancy, not just
within-image redundancy.

Some of our inspiration comes from raster databases, which
encode images (often of geospatial data) as a set of smaller
images/regions with locations in the original large image.
Such a set-up is convenient for transmission or data load-
ing, as it is possible to load and process only parts of the
image at a time. Geodatabases, such as ArcGIS are set-up
this way [4].

We combine the idea of raster databases with the idea
of image compression. Patch-based image representations
are also used in computer vision for various tasks, includ-
ing image matching [3], object recognition [11], and image
processing [2]. Considering images as collections of patches
allows for matching without rigid spatial constraints. In
other words, such approaches can often find approximate im-
age matches, such as different viewpoints of the same scene.
Patch-based approaches have thus proven to be sufficient
for scene recognition applications. We adapt a patch-based
approach as well. Even very coarse-grained patches can pro-
vide sufficient visual information for scene recognition pur-
poses. Thus, if we reconstruct images from approximately-
similar coarse-grained patches, they will still provide suffi-
cient input to scene classification algorithms, for instance.

3. APPROACH
To limit the complexity, we assume each image to be a

square of m2 pixels, and for all patches to be squares of the
same size, n2 pixels. We formally describe our method in
Sec. 3.1. To summarize, we first segment each image into
patches and store them in the patch dict table, a dictionary
of patches. Only patches sufficiently different from all the
other patches in patch dict are subsequently added to the
dictionary (see sec. 3.2). We describe our patch distance
in sec. 3.3 and our implementation details in 3.4. Instead
of storing each image explicitly, we store pointers to the
patches approximating its original patches. Thus, during
reconstruction, we simply stitch together the patches using
pointers (sec. 3.5).

3.1 Overview
Our method is governed by the following parameters:

• m - The width and height of all images.

• n - The width and height of all patches1.

1We assume that m mod n is 0.

• k - The number of images in our database.

• S - A distance function S : In×n × In×n → N, where
we define In×n to be the space of all n × n image
patches. Section 3.3 details distance measures. The
distance function should be at least a pseudometric,
so S(P1, P2) = 0 if and only if patches P1 and P2 are
the same, and so that the triangle inequality holds.

• T - A distance threshold, T ∈ R; used as a maximum
value we allow on S for patch mappings.

It is worth noting that we propose a lossy compression
scheme (T > 0). For the remainder of the paper, when we
use the term images we are referring to entire images from
our database. When we use the term image patches we are
referring to small n × n contiguous portions of images in
our database. When we use the term dictionary patches, we
are specifically referring to patches which we have chosen to
store in our patch dict and use for compression. Here we
present an overview of our compression method; in subse-
quent subsections we delve into the details.

3.2 Algorithm
We begin our compression algorithm by seeding patch -

dict with an initial set of dictionary patches. These patches
are chosen from randomly selected n×n image patches from
the entire image database (see sec. 6.2 for a discussion of this
seeding strategy). During the image insertion step, we parti-

tion each of our images into
(
m
n

)2
non-overlapping patches,

with the intent of mapping each image patch Pj to a patch
in patch dict. Thus, rather than storing the original image
patch for a given image, we simply store a pointer to a patch
in patch dict. The dictionary patch we choose is the one
which is closest to the image patch according to some dis-
tance metric S, i.e. the patch PNN in patch dict such that
S(PNN , Pj) is minimized. If S(PNN , Pj) > T , we then store
Pj as a new patch in patch dict and add a pointer from the
image to this dictionary patch (at the corresponding (x, y)
location in the image). Algorithm 1 summarizes the image
insertion procedure. Assuming that our patch dictionary is
a good sample of the image patches in our image database,
adding additional patches should be a relatively rare proce-
dure. We discuss how often these extra insertions are needed
in sec. 6.5. Thus, the space savings come from only need-
ing to store an effective pointer for each image patch, rather
than the entire patch data. Note that the maximum thresh-
old on the distance of image patches and dictionary patches
guarantees that each compressed image is at most mT

n
away

from its original counterpart in S.

Algorithm 1 Basic alg. to insert image I into database

1: Patches← Patchify(I, n)
2: for Pj in Patches do
3: PNN ← argminPi∈patch dict{S(Pi, Pj)}
4: if S(PNN , Pj) > T then
5: insert Pj into patches

With a large table of patches, finding the closest patch
can be computationally expensive. In order to speed up
the search, we employ locality sensitive hashing (LSH). Al-
though this softens the constraint that we always find the

2

closest dictionary patch in patch dict for each image patch,
the closest patch is still found with very high probability, and
in expectation the selected patch is still very similar. Sec-
tion 5 details nearest-neighbor retrieval, and alg. 2 includes
the algorithm updated to account for this optimization.

Algorithm 2 Modification of alg. 1 with approximation

1: Patches← Patchify(I, n)
2: for Pj in Patches do
3: SimPat←FindLikelySimilarPatches(Pj , patch dict)
4: PANN ← argminPi∈SimPat{S(Pi, Pj)}
5: if S(PANN , Pj) > T then
6: insert Pj into patches

We will define M : In×n → In×n to return the closest
patch to Pj from the set of patches returned by FindLikelySim-
ilarPatches. M(Pj) is the approximate nearest neighbor to
Pj . Thus, our compression problem can formally be stated
as choosing a selection of image patch to dictionary patch
mappings which minimizes the storage space usage of our
patch table, while constraining each image tile to be at most
T away from its mapped patch. In other words,

minimize
patch dict,M

c(k, d,m, n)

subject to S(Pj ,M(Pj)) ≤ T, j = 1, . . . , k
(m
n

)2

.

where c(·, ·, ·, ·) is a cost function as defined in section
6.1.1, d is the number of patches in the dictionary (i.e. d =
|patch dict|), and k,m, n are as defined in 3.1.

Given our pointer representation, we are able to construct
the compressed image quite efficiently. Given an image iden-
tifier, we iterate over all patch pointers stored with it, as-
sociated with each image location (x, y), and simply insert
the pointed to patch at that location.

3.3 Patch Distance Metric
There are many image similarity/distance metrics that

have been developed for images (see [13] for a good sur-
vey), and our method is applicable to any metric that in-
volves Euclidean distance over image features, its stacked
color channel pixel values being the simplest case.

For the purpose of this project, we choose to use squared
Euclidean distance over (CIE)LUV color space. Given two
n × n patches Pi and Pj , we evaluate distance S per color
channel u as follows:

S(Pi, Pj , u) =
||Pi(u)− Pj(u)||2

n2

where || · || denotes standard Euclidean norm. We normalize
by the dimensionality of the space to allow us to keep the
distance threshold independent of the patch size. See section
6.3 for more details. A benefit of using a Euclidean distance
metric is that it allows us to use LSH to retrieve patches
that are likely to be similar.

3.4 Implementation
We used PostgreSQL to construct our database, and used

the Java API to talk to the database from a custom ex-
ecutable. Locality sensitive hashing, image segmentation

and reconstruction were all implemented in Java, and used
to construct a hash table on patches in PostgreSQL.

Our code is available at:

https://github.com/shumash/db_project

The n× n patches are stored as byte data in the patch -

dict table. We store the patch pointers for each image in
the patch pointers table. The full schema looks as follows:

patch_dict(id int PRIMARY KEY,

patch bytea);

images(id int PRIMARY KEY);

patch_pointers(img_id int REFERENCES images(id),

patch_id int REFERENCES patch_dict(id),

x int,

y int);

patch_hashes(

patch_id int PRIMARY KEY REFERENCES patch_dict(id),

hash int);

where patch pointers.x and patch pointers.y refer to the
left top corner location of each patch in the image.
A visualization of our schema is provided in fig. 1.

3.5 Image Reconstruction
To reconstruct an image, we simply follow the (logical)

pointers in the corresponding patch pointers database ta-
ble entry to retrieve the patches from the patch dict for
each (x, y) location in the image:

Algorithm 3 Image reconstruction

1: PatchPointers← getAllPatchPointers(patch pointers)
2: PatchData← getAllPatches(patch dict, PatchPointers)
3: ResultImage← []
4: for Pd in PatchData do
5: ResultImage.set(Pd.x, Pd.y, Pd.patch)

4. NEAR NEIGHBOR SEARCH
Fast retrieval of similar patches is crucial for making con-

struction of a sizable patch-based database feasible. This is
essentially near-neighbor retrieval in relatively high dimen-
sions 3 · n2 (1875 for patch size n = 25). Image retrieval
has been addressed in a number of papers, including more
complex feature representations [8]. Our problem is some-
what different from most of previous work in that the vari-
ability in small patches is much less than in regular-sized
images, semantic information is irrelevant, and vectors are
much shorter than for regular-sized images. Thus, we focus
on tuning a simple Locality-Sensitive Hashing variant for
our particular application.

4.1 Locality-Sensitive Hashing
Locality-Sensitive Hashing (LSH) [1] is a popular approach

for approximate near-neighbor search in high dimensions.

3

Figure 1: The proposed database schema.

(a) Typical LSH uses several tables.

(b) Random projection hashing family F .

Figure 2: a) LSH typically constructs L hash tables, each relying
on an amplified hash function G, composed of a concatenation
of simpler hash functions F . b) In random projection hashing,
each F is evaluated by projecting a point p (a patch color vector
in our case) on a randomly chosen unit vector, and binning it
into uniform bins.

The high-level idea behind LSH is using a set of hashing
functions that map a vector Pi to its bin b(Pi) such that:

P [b(Pi) = b(Pj)|S(Pi, Pj) < T] > P1

P [b(Pi) = b(Pj)|S(Pi, Pj) > cT] < P2

where the collision probability for vectors that are close to-
gether is high (> P1), and the probability of collision for
vectors that are further apart is low (< P2).

To achieve high guarantees on finding the nearest neigh-
bor, LSH typically requires multiple hash tables. For ex-
ample, two red points in Fig. 2 are close, but they fall in
different bins in table 1. However, in some table (say Table
L), they are likely to end up in the same bin. This amounts

to taking an OR over collisions in all the tables, amplifying
probabilities. Implementing this scenario in the context of
a database incurs a significant storage overhead, as for each
patch Pi we not only need to store the patch itself, but also
L hash indices. By the same token, queries must be made
to all the hash tables, which incurs significant overhead at
near neighbor search time.

High precision near neighbor search is not necessary for
our application, and we focus, instead, on efficiency. In
order to accomplish that we aim to minimize the prob-
ability of collision for dis-similar patches, as long as
probability of collision for similar patches results in finding
enough neighbors for a suitable compression ratio. To this
end, we aim to answer the question: how well can the system
perform with just one hash table?

In order to optimize the performance of our single hash
table, we want to amplify the probability of a single hash
function from a family F by using an AND operator on col-
lisions with several hash functions F1...Fq from that family.
This is a standard technique which results in an amplified
hash function G:

G(Pi) = ConcatBits(F1(Pi), ...,Fq(Pi)) (1)

where ConcatBits simply allocates a constant number of
bits to each hash and concatenates them into a single value.
The probability that dis-similar patches collide with this
amplified function is (P2)q, where P2 is the probability of
collision using just one function in the family. We formalize
our Near Neighbor search in Sec. 4.2, and take a closer look
at hashing functions in the following sections. In Sec. 4.3,
we introduce a common choice for a hash function family F ,
and optimize it for our application in Sec. 4.4 and 4.5.

4.2 Near-Neighbor Search with LSH
Using a single amplified hash function G, finding all likely

neighbors of a patch simply amounts to computing its hash
value and taking all the patches that fall into the same hash
bin. More formally, we define our approach in alg. 2 as
follows:

FindLikelySimilarPatches(Pj):
1: h← G (ToVector(Pj))
2: SimPat ← select patch from patch dict where id

in (select patch id from patch hashes where hash =

h)

Of course, the quality of the result depends heavily on the
properties of the hash function, which is something we dis-
cuss next.

4

4.3 Random Projections Hashing
A common choice for a hash function family F is the fam-

ily of random projection functions. In this scheme, a given
Fi(Pj) ∈ F is evaluated by projecting Pj onto a randomly
chosen unit vector vi, and binning the value into a ran-
domly chosen bin (see fig. 2, where bins are uniform across
dot product values:

Fi(Pj) = bPi · vi + b

w
c (2)

We choose to work with this approach, but operate under the
constraint that the value of the amplified G of q functions
Fi ∈ F must fit in a 32-bit int. This only affords us 10
hashes in our amplification, with a bin size of 8 (3 bits).

It is unlikely that the projection vector picked randomly
will have desirable properties, given high dimensions. For
example, it is quite likely that typical patches will be or-
thogonal to most vectors picked, causing many dis-similar
patches to end up in the same bin (and this is exactly the
behavior we observed in our results).

4.4 PCA-based Projection Hashing

(a) PCA-based hashing

(b) Dot product distributions

Figure 3: PCA-based hashing uses directions of maximal variance
in patches as projection vectors, and adapt the bin size for each
projection vector using data. In b) we show distributions of patch
vector projections on the 3 principal components (magnitude of
dot product).

To ensure that patches are well-distributed among the
bins, avoiding database lookup of many potential neigh-
bors, we propose a PCA-based hashing scheme. Under this
scheme, we run Principal Component Analysis (PCA) to
compute directions of largest variance for typical image patches
and use the 10 first principal components as the projection
directions (see fig. 3). This ensures that the projections of

typical patches are as far apart as possible. To further op-
timize the binning, we project a set of patches (grey dots in
fig. 3) onto each principal component vi (blue dots in fig. 3),
and approximate the distribution of the dot product values
by a Gaussian Ni(µi, σi) (orange curve in fig. 3). In order
to bin a dot product value into one of 8 bins (3 bits/bin),
we adapt the bin size to µi and σi.

Figure 4: Eigenvalues of the PCA on 80K patches and visualiza-
tion of the L-channel (lightness) of the first 10 components.

In our experimental setup we uniformly sampled patches
from two distinct sets of 1000 images from the SUN [12]
database (and distinct from the set of images we inserted
into the database), and used the patches to:

• compute PCA vectors in Luv color scheme on the train
set of 80,000 25x25 patches (see fig. 4)

• compute distribution of typical projections on 10 first
principal components using the dev set of 40,000 25x25
patches (see fig. 3(b)).

We found that this choice of a hashing function has a sig-
nificant positive effect on performance (see sec. 7).

4.5 Hashing Uniform Patches
The difficulty of Near Neighbor search for images arises

from their high dimensionality. However, natural images
contain many uniform or nearly uniform patches, which can
be easily indexed using their quantized color. We experi-
mented with using a different hashing scheme for patches
that are nearly uniform, quantizing them into fewer than
1000 bins by the mean color.

To determine if patch P is uniformly colored, we first
looked at the standard deviation u2 of the patch in all chan-
nels, which is just the L2-norm of P − µ(P), where µP is a
patch with every pixel set to the mean of P . However, we
found that the L2-norm is insensitive to outliers (which are
very apparent in color patches), and patches with similar
u2 values could appear both uniform and nonuniform (see
fig. 5(a)).

Instead, we decided to classify uniformity using u4, an L4-
norm of P − µ(P), split into channels. Higher-order forms
tend to collapse all values < 1.0 to zero, and expand all
values > 1.0 to infinity. Hence, we normalize the elements of
P−µ(P) by our channel threshold T to ensure this property.
The best approach would be to pick uniform thresholds on
u4 using a training set, but in the interest of time we hand-
picked a threshold of 0.1 for all the channels. See fig. 5(b) for
results using this classification on a random set of patches.

We evaluate the performance of PCA-based hashing com-
pared to our hybrid PCA+uniform patch hashing in Sec. 7.

5

(a) Pitfalls of standard deviation

(b) Uniformity classification with p-norm

Figure 5: Standard deviation in a) is not very sensitive to out-
liers, as patches with nearly identical values of stdev1, stdev2 and
stdev3 may appear either uniform or non-uniform, as shown in
the table. In b), our classification of patches using p-norm anec-
dotally shows more reliable results.

5. DATABASE OPTIMIZATION
In this section we discuss additional optimizations to the

database to make efficient construction of patch database
feasible. Here and below Inew is an image about to be in-
serted into the database, and Pn

1 ...P
n
j ... are patches com-

prising it. To make large databases practical, our objective
is to make the insertion process as fast as possible, given any
of the Near Neighbor search methods described in Sec. 4.

5.1 Database Queries
Referring back to Alg. 2 and the definition of FindLikely

SimilarPatches in Sec. 4.2, it is clear that to insert Inew,

about 2
(
m
n

)2
database queries are issued:

(
m
n

)2
for finding

near neighbors and at most
(
m
n

)2
for inserting any patches

without matches. This incurrs a significant overhead, and
we have modified our algorithm to make only at most 2
queries for every new image insertion. To accomplish this,
we use batch query and insert, which result in 2 database
queries, once to find all the likely similar patches, and once
to insert new patches (See Alg. 4).

Algorithm 4 Optimization of alg. 2 for DB Queries

1: Patches← Patchify(I, n)
2: Hashes← []
3: for Pj in Patches do
4: Pj .h← G (ToVector(Pj))
5: add Pj .h to Hashes

6: NewPatchesToStore← []
7: StoredPatches← HashMap: hash → [stored patches]
8: StoredPatches.FillFrom(select hash, patch from

patch dict, patch hashes where hash in Hashes)
9: for Pj in Patches do

10: SimPat← StoredPatches[Pj .h]
11: PANN ← argminPi∈SimPat{S(Pi, Pj)}
12: if S(PANN , Pj) > T then
13: NewPatchesToStore.Add(Pj)
14: StoredPatches[Pj .h].Add(Pj)

15: BatchInsert(NewPatchesToStore)

Please note that this hides some of the complexity, as we
also need to keep track of pointer data, i.e. which stored
patch ID each tile in the new image should point to. If
HashMap contains newly processed patches that have not yet
been inserted into the database, we need to make sure that in
the end the pointers for the image contain the right database
IDs.

5.2 Patch Buffer Pool
In order to further optimize performance, we implemented

a BufferPool for patches with a least-recently-used (LRU)
eviction policy. The LRU policy was picked based on the
intuition that similar images are often processed together.
This is particularly true if the database is constructed se-
quentially from a categorized database, such as SUN [12].

The function of the BufferPool is two-fold. In addition
to minimizing database queries and random I/O for reading
patches from disk, the BufferPool stores the hash value of
each patch, as well as its vector form for faster computation
of the distance S. These values are computed in a lazy
fashion - only when requested. Given our unoptimized Java
implementation of image vectorization and dot product, we
found these measures to yield a non-negligible speed-up.

6. PARAMETER ESTIMATION
A number of parameters can be tweaked to change the

patch matching and storage, and different choices may be
appropriate for different applications and performance re-
quirements (both quantitative and qualitative). These pa-
rameters include the size of the input images, the size of the
patches extracted, the sampling strategy used to seed the
dictionary, the distance metric and thresholds used to com-
pare patches, as well as the parameters required for indexing
and retrieving patch matches (discussed in Sec. 4). Here we
discuss some of the parameter choices made and the exper-
iments that lead up to these choices. Other possible choices
are discussed in Sec.9.2.

Our quantitative performance metrics involve examining
how the patch dictionary size grows with the addition of new
images to the database (the growth function and rate) and
the compression ratio per image (viewed as a distribution

6

Figure 6: For demonstration purposes only, we choose a large
patch size and low distance threshold. Under these parameters,
the original image is reconstructed to take up only 40% of its
original size (in pixels). The 60% of the patches that have been
replaced come either from the same image (46% of them), or from
other images (the remaining 64%). Notice that when the size of
the image and its reconstruction are halved, the artifacts already
become visually insignificant, and would not impair a scene recog-
nition or search task.

Figure 7: Compare this image reconstruction, computed with a
dictionary of 25×25 pixel patches with the reconstruction in fig.6,
computed with 50×50 patches. In both cases, a similar threshold
is used (scaled to the patch size, as discussed in sec. 6.3) but the
visual artifacts are less noticeable because smaller patches have
less contained structure, and are more likely to be homogenous
in appearance.

over compression ratios and summarized as the average com-
pression ratio). Qualitative evaluations involve determining
whether a human can spot compression artifacts and how
salient they are in the images. The authors of this paper
manually examined images reconstructed from the dictio-
nary patches. A crowdsourced evaluation strategy would be
more appropriate for larger-scale studies, but is beyond the
scope of this paper.

There will always be storage vs speed trade-offs between
compression benefits (patch dictionary size vs image recon-
struction time), and reconstruction quality. For many com-
puter vision tasks including scene recognition (and thus re-
trieval), imperfect reconstructions with artifacts may not
be a problem as long as the overall scene structure does not
change. For instance, [9] has shown that with images of
pixel dimension 32x32, humans are already able to achieve
over 80% scene and object recognition rate. See fig.6 for a
demonstration of an image that has serious reconstruction
artifacts, but when downsampled to a thumbnail, they be-
come insignificant, and thus may have no impact on visual
recognition.

6.1 Patch Size
Larger patches contain more image structure, and thus

the probability that another patch contains the same or sim-
ilar image content decreases with the number of pixels in a
patch. At larger granularities it becomes increasingly harder
to find matching patches in the patch dictionary, and the
closest matching patches for textured regions might intro-
duce artifacts (see fig.7). At the same time, patches that are
too small do not offer as efficient a compression strategy. We
must balance the costs of storing pointers to patches for each
image in our database, as well as all the patches themselves,
against the costs of storing the images in their original form.
This calculation is investigated further below.

6.1.1 Cost Evaluation
Assume, as before, that d is the number of patches in

patch dict. In practice, d is a function of the number of
images added to the database as well as the distance func-
tion S and threshold T . We further assume that each pixel
requires 3 bytes to store and that each pointer is 8 bytes (a
standard integer for a 64-bit system). Then, with k images
in the database, the full cost to store all the original images
(no patch-based compression scheme) in our database is:

c′(k,m) = 3km2 (3)

In the case where we store pointers to patches, we have two
tables: one table to store pointers to dictionary patches, and
a second table to store the dictionary patches themselves.
Under this “patch pointer” scheme, with k images and d
patches, the cost c to store all the images in our database
is:

c(k, d,m, n) = 4k
(m
n

)2

+ d(4 + 3n2) (4)

.
The first term is the cost of storing the pointer data, while

the second term is the cost of storing the patches themselves.
The 4 constant comes from the fact that each pointer is a
4-bit int, while each patch requires storing 3 color channels
for n2 pixels, as well as a 4 byte hash value. Note that when
dealing with extremely large image collections, it is possible
to have over 232 patches; in this case a bigint would be re-
quired for storing pointers, changing the 4 to a 8 and slightly
changing the subsequent analysis. In practice, we also store
a bit more metadata to make managing the database easier,
so this analysis should be thought of more as an optimal
bound on storage.

Given these two equations, for a fixed m and n, we can
easily see that our compressive scheme becomes more space-
efficient than storing the original images when:

d <
m2(3− 4/(n2))k

4 + 3n2
(5)

As long as we choose a distance threshold such that new
image patches get added at a rate that guarantees this in-
equality is satisfied, our compressive method of image stor-
age will save space. Figure 8 shows an example of how
the optimal storage cost changes with different patch and
image counts, where the optimal cost is defined as copt =
min (c, c′); in other words, storing the images using the less
expensive method. See fig. 8.

7

Figure 8: A graph demonstrating how copt changes with k and d
for m = 100 and n = 10. Note the line of discontinuity where
d = 357.3k - this is the line where the costs of c and c′ intersect.

Figure 9: Example of a biased patch dictionary construction
strategy, leading to non-uniformity in image reconstruction qual-
ity. Images added to the database earlier (top row) are better
reconstructed (due to more patch samples in the database) than
images added later (bottom row), constrained to be constructed
out of patches added initially. The sky pixels in the image added
later are borrowed from sky pixels of other images (44% of the
pixels in this image come from other images, compared to only
11% in the image on the first row). Note: here we use a very high
patch distance threshold and large patch size for demonstration
purposes only, to emphasize the artifacts created.

6.2 Sampling strategies
A patch dictionary can be built up incrementally, adding

new patches as new images are added to the database. A po-
tential problem with this approach is that image reconstruc-
tion quality will tend to decrease with the order in which
images are added, such that images added to the database
earlier will tend to have more patches that correspond to
them (see Fig.9 for an example). A strategy with a more
even distribution of reconstruction quality over images in-
volves starting with a batch of images, and seeding the dic-
tionary by randomly sampling patches from a set of images
from the batch. This is the strategy we employ.

6.3 Distance Function
Many image (more specifically, patch) distance functions

are possible, each with its own distinct set of parameters
that can be tweaked for the required application. Because
we are dealing with patches of a size specifically chosen to in-

crease within-patch homogeneity, we do not consider cases of
patches containing objects (the most we expect is an object
boundary or simple texture), and thus do not need to con-
sider complex image similarity/distance functions (involving
SIFT, GIST, and other computer vision features). We can
constrain ourselves to color distance, and split a patch Pi

into 3 LUV color channels: Pi(L), Pi(U), Pi(V).
Then we consider two patches Pi and Pj similar when,

given n× n pixels, all of the following are true:

1

n2
||Pi(L)− Pj(L)||2 < T1

1

n2
||Pi(U)− Pj(U)||2 < T2

1

n2
||Pi(V)− Pj(V)||2 < T3

The 1
n2 term allows us to normalize for patch size, so that

the threshold values chosen becomes independent of patch
size. Here we constrain the average distance value of all the
pixels in a patch to fit a threshold, whereas it is possible to
have alternative constraints (where instead of the average,
the maximal pixel difference or the variance of the pixel
differences or some other measure over pixels in a patch, is
compared to a threshold).

Note additionally that if instead we fix a single thresh-
old for the sum of the Euclidean differences in the 3 color
channels as in:

1

n2
[||Pi(L)−Pj(L)||2+||Pi(U)−Pj(U)||2+||Pi(V)−Pj(V)||2] < T

then the similarity in one color channel may compensate
for the difference in another, producing skewed results (see
fig. 10).

Multiple color channels are possible, but we choose to
work in the (CIE)LUV color space, which is known to be
more perceptually uniform than the standard RGB color
space [6]. Additionally, our formulation makes it possible
to impose separate distance thresholds on each of the color
channels (T1, T2, T3). However, for simplicity of analysis, we
set T1 = T2 = T3 = T , where the choice for the value of T
is described next.

6.4 Distance Threshold
Choosing a threshold T requires weighing the quantitative

benefits of compression with the qualitatively poorer image
reconstructions. We ran a number of experiments, varying
the threshold, and quantitatively and qualitatively examin-
ing the results. We rescale each color channel to be between
0 and 1, in order to choose a threshold T that is bounded
by these values. In fig. 11 we plot a few small experiments
(with 200 images) for demonstrative purposes. The images
were 500 × 500 pixels, and the patch size was 25 × 25. We
chose this patch size due to the discussion in 6.1. Below
we consider a number of quantitative indicators for patch
compression.

In the set of graphs in the first column of fig. 11, we plot
in blue the dictionary size against the number of images
added to the database. We compare this to the total number
of patches that would have been stored if no compression
scheme was utilized (red dotted line). We can see that for
all choices of threshold, the size of the patch dictionary grows
slower than the total number of patches that would need to
be added if all images were stored along with their original
patches. The gap between the blue and red dotted lines is

8

(a)

(b)
Figure 10: This is what happens when we do not separately con-
strain each of the color channels to match. We have patches that
are (a) the wrong color and produce visible visual artifacts, while
(b) matching in terms of general hue (average of the color chan-
nels). Again, the patch size and distance threshold were chosen
to emphasize the artifacts.

a measure of the storage savings. As the threshold becomes
more stringent, the blue line approaches the red dotted line.
Note additionally that as the threshold becomes smaller,
patches are more likely to be reused from the same image
than from other images when compressing an image, because
only patches from the same image will be similar enough to
other patches from this image.

The second column of fig. 11 contains histograms indicat-
ing how many images contributed different amounts of new
patches to the patch dictionary. When the threshold is very
small (as in the histogram in the last row) more of the im-
ages contribute most of their patches (380-400 new patches
added to the patch dictionary per image). Note addition-
ally that the small number of images that are contributing
0 new patches to the dictionary account for the 10% dupli-
cates that are present in the SUN database (more about this
in sec. 9.1).

The third column of fig. 11 contains an insertion history:
for each image inserted into the database, we track how
many of its patches were added to the patch dictionary. We
can see that as the patch distance threshold decreases, most
images contribute most of their patches. This provides simi-
lar information as the histogram (which is merely the cumu-
lative), but allows us to monitor any temporal changes. The
spikes to 0 in this graph are indicative of duplicate images,
and are discussed further in sec. 9.1.

In the final column of fig. 11, we see a sample image re-
construction. We can see that the reconstruction quality in-
creases, and visual artifacts decrease, as the distance thresh-
old decreases (becomes more stringent). At some point in
the middle, the reconstruction is already indistinguishable
from the original, but with significant database compression
benefits. Thus, for further analysis we consider the thresh-
old T = 0.01 (recall that this is per color channel, and is
independent of patch size).

Figure 12: A patch dictionary constructed from 5 × 5 patches
from 100 × 100 images, with a T = 0.01 patch distance thresh-
old, obtains an average compression of 18.95% per image. The
average number of new patches added per image is 330.70 with a
total dictionary size of 645, 534 patches representing 1952 images.
The black dotted vertical lines mark the addition of new image
categories, (left to right) mountain (with dictionary growth rate
312.96, equivalent to compression of 21.76% per image), badlands
(growth rate 330.50, compression 17.38%), canyon (growth rate:
360.61, compression 9.85%), and pasture (growth rate: 334.11,
16.47%). A few image samples from the 4 categories are included.
Note that for this growth rate, storing image patches will always
take less space than storing the entire image, since c < c′.

6.5 Generalization across image categories and
sizes

In the preceding sections, we determined that for an im-
age sized 500 × 500, a 25 × 25 patch size with a T = 0.01
patch distance threshold is appropriate since compression
savings are properly balanced against artifacts introduced
during image reconstruction. For further experiments, we
scale down the image size to 100 × 100 and the patch size
to 5 × 5, accordingly, maintaining the patch:image size ra-
tio. Note that the distance threshold still applies as it is
independent of patch size. The reduction in image size al-
lows us to consider larger experiments on databases of image
thumbnails.

In fig. 12 we consider the growth of the patch dictionary
as we add 2K images to our database. We add images from
different categories, and observe a slight change in dictionary
growth rate for every new category added. Although there
is some variation across categories, the overall compression
is 18.95% per image, demonstrating generalization across
categories.

Not all image content is amenable to the same type of
compression. For some types of images, particularly where
there is a lot of spatial structure (e.g. indoors scenes with
objects and parts), compression artifacts are much more no-
ticeable and thus distance thresholds should be more strin-
gent. An interesting extension that is beyond the score of
this paper would be to have a content-aware distance thresh-

9

Dictionary Size Growth Number of Patches Added (histogram) Patches Added per Image (sequence)

0 20 40 60 80 100 120 140 160 180 200 20 60 100 140 180 220 260 300 340 380

20 60 100 140 180 220 260 300 340 380

20 60 100 140 180 220 260 300 340 380

Patches AddedImages Added Image Number

 0 20 40 60 80 100 120 140 160 180 200

 0 20 40 60 80 100 120 140 160 180 200

 0 20 40 60 80 100 120 140 160 180 200

120

100

80

60

40

20

0 20 40 60 80 100 120 140 160 180 200

40

30

20

10

0

400

300

200

100

 0

#
 P

at
ch

es
400

300

200

100

 0

#
 Im

ag
es

90000

70000

60000

50000

40000

30000

20000

10000

 0 0 20 40 60 80 100 120 140 160 180 200

90000

70000

60000

50000

40000

30000

20000

10000

 0

D
ic

tio
na

ry
 S

iz
e

Figure 11: Quantitative and qualitative results obtained by varying the patch distance threshold, T , while extracting 400 patches from
each image. In the first row, T = 0.1, the dictionary size is 50,822 patches, and the average compression per image is 36.73%. In
the second row, T = 0.01, the dictionary size is 65, 794 patches, and the average compression per image is 18.09%. In the third row,
T = 0.001, the dictionary size is 72, 445 patches, and the average compression per image is 9.80%.

10

old (self-adjusting to content type such as indoor vs out-
door/natural).

For our database system, compression works for both in-
door and outdoor images. In outdoor images, a lot of the
compression savings come from accounting for the homoge-
neous sky patches (which may take up a large portion of
the image). Although indoor images often contain many
more objects and are more cluttered than outdoor images,
they contain large homogenous regions corresponding to the
walls and ceilings of rooms, which can surprisingly compress
better than some outdoor images (walls may be more ho-
mogeneous than the sky). Thus, our compression approach
generalizes to different types of scenes.

7. QUANTITATIVE EVALUATION
Once the quality threshold is chosen, the key differentiator

between the speed of database construction and the quality
of reconstructed images is the hashing strategy. We con-
structed 3 databases on the same set of 10,000 images sam-
pled from all categories of the SUN database, with image
size set to 500, and patch size set to 25, using the following
hashing strategies for Near Neighbor(NN) search:

1. Naive NN: 10 random projection vectors sampled
from unit Normal with uniform bin size (outliers trun-
cated)

2. PCA NN: 10 first principal components as projection
vectors with bin size adapted to the distribution of
projections

3. PCA + U NN: nearly uniform patches are hashed
using Luv color quantization into 864 bins, and non-
uniform patches are handled with PCA NN

We detail a qualitative evaluation of the results with a user
study in sec. 8. Here we consider the quantitative perfor-
mance of our system as we grow our database to 10K images.

In fig. 13 we see that as for the smaller tests in sec. 6, the
growth of our patch dictionary is sub-linear, demonstrating
increasing compression benefits as more images are added to
the database. We show that this trend holds for all 3 of our
NN methods (naive, pca, and pca+u). Note that the naive
NN approach became infeasible as the dictionary grew, as
can be demonstrated by the time required to upload each
successive image into the database (see fig. 14). Due to this
behavior, it was terminated early.

We see that the two approaches using the pca NN scheme
have significantly better time performance. This is because
in the naive approach, most of the data falls in relatively few
bins. Making use of pca helps by projecting data onto the
directions of maximal variance, which helps to differentiate
between patches, and thus redistribute them across multiple
bins. Table 1 includes a breakdown of the number of patches
and bins produced in each of the NN approaches, as well
as the timings to insert images. Figure 15 demonstrates
that in the naive approach, the percent of patches that fall
into the first bin already exceeds 50%, and over 70% of the
dictionary’s patches are accounted for by the third bin. This
explains why the naive approach takes such a long time
to run: it must go through a very big number of patches
to determine whether to add new patches from an inserted
image.

Because the naive approach has fewer bins, it is also eas-
ier to find a matching patch in a bin, and thus new patches

Figure 14: As more images are added to the database, more
patches are available in the dictionary. Thus, it is expected that
we will need to look through more of the patches in order to de-
termine if a matching patch already exists or if a new one should
be added. The time to insert becomes infeasible in the case of
the naive approach because many patches end up in the first few
bins (see fig. 15) requiring a linear search through all of them.
The pca-based approaches allow patches to be more evenly dis-
tributed across bins which reduces the look-up time during inser-
tion (fewer patches to examine in any given bin). Note: the weird
behavior at the end of the green curve is an artifact of another
process coming online at the same time as the database insertion
procedure was run.

Figure 15: Most of the patches hash to the first few bins in naive
NN approach, which explains why this approach takes a very long
time to insert new images into the database. The pca-based meth-
ods end up with fewer patches per bin, which is crucial to making
our whole pipeline feasible.

are less frequently added to the dictionary, leading to higher
compression ratios using this approach. This explains the
gap we see between the red and green/blue curves in fig. 13a.
Another way to look at this is to consider the average num-
ber of patches added per image (see fig. 13b). As more and
more images are added to the database, fewer patches are
added to the dictionary. We can more clearly see the gap
between the red and green/blue curves in this plot.

Even though we do not see the dictionary size plateauing
even for our 10K image database, the trends in fig. 13b are
promising, and show a decline in the number of patches be-
ing added. We believe that much bigger datasets should be
investigated in future work to really see the plateau effect
and gain the full benefits of our patch-based compression
system. Note that even personal image collections are of-
ten bigger than 10K images, so this is not an unreasonable
requirement.

8. QUALITATIVE EVALUATION
For the qualitative evaluation, 3 of the paper’s authors in-

dependently rated 100 randomly-selected image reconstruc-

11

(a) (b)
Figure 13: (a) As dataset size (the number of images stored in our database) increases, compression benefits increase. The dictionary
size is likely to plateau for even larger databases. (b) As dataset size increases, the average number of patches added for each new
image decreases. This demonstrates that we are effectively making use of patch redundancy across images. In both plots, the red line
corresponds to the naive NN approach, the blue to the pca NN approach, and the green to the pca+u NN approach. We can see that
the naive approach obtains better compression, but at a high timing cost, as depicted in fig. 14 and explained further in fig. 15. The
pca-based approaches allow our system to be feasible.

Up to 4.4K Up to 10K
method time #patches #bins time #patches #bins

naive 18h20min 1,384,080 670,928 n/a n/a n/a
pca 1h54min 1,473,592 1,282,768 7h27min 3,309,583 2,751,235

pca+u 2h5min 1,456,059 1,275,827 10h56min 3,281,241 2,742,888
Table 1: Results on 10,000 images samples from all the categories of the SUN database, where the rows are for naive projection hashing,
PCA-based hashing and PCA-based hashing combine with uniform patch hashing.

ranking requirement
5 no visible distortions
4 only minor distortions
3 distortions present, but objects are recognizable
2 pretty large distortions, but scene is recognizable
1 severe distortions, scene is not recognizable

Table 2: The quality evaluation scheme used.

tions from each of the three nearest neighbor methods de-
scribed in sec. 4: naive, pca, and pca+u (all 3 raters received
the same set of images). Tabletab:rankings outlines the rat-
ing scheme used.

None of the raters received any instructions other than the
rating scheme, and the evaluation was not further discussed.
Nevertheless, all the raters were highly correlated with each
other, where the inter-rater correlation ranged from 0.71 to
0.75 on the naive images, 0.51 to 0.61 on the pca images,
and 0.59 to 0.64 on the pca+u images. In figure 17a we plot
the mean and standard error image rating for each rater
and each NN method. We see some differences between the
raters, but most notably, the pca approach was rated high-
est across all 3 raters, and when taking the average ratings
(over all 3 raters), the reconstruction quality is statistically
significantly better rated for the pca method over the naive
method.

Next, to determine whether ratings corresponded to the
actual compression ratio for the images, we correlated each
of the rater’s scores with the image compression ratios, and
then considered different combinations of the rater scores
(min, max, mean, mode, median) to see which statistic over
the subjective ratings might be most predictive of the ob-

jective image compression (see table 3). Because raters are
highly subjective as to what they consider a reasonable re-
construction (even given the criteria above), we will use the
mean rating across all raters as it is most correlated with
image compression, and most consistent. In figure 16 we
demonstrate the pca NN method reconstructions of a set
of images with large compression ratios, that also received
high quality ratings (taking the mean across raters). This
figure gives a little more insight about how our system works,
because naturally, the images with the highest ratings are
going to be the ones that benefit least from compression,
and that is a less interesting case to consider. We are inter-
ested in reasonable reconstructions with great cost savings.
We plot the trade-off between compression ratio and recon-
struction quality in fig. 17b. As expected, quality ratings
go down as the compression ratio increases. Depending on
the application, the optimal point can be chosen.

9. CONCLUSION
We have presented in this paper a largely scalable lossy

compression scheme which exploits indexing infrastructure
provided by database management systems for efficient stor-
age, and exploits the redundancy of large image databases
to drastically reduce the storage cost. In doing so, we com-
pared three methods which exploited locality sensitive hash-
ing for image indexing - a naive method which relied on ran-
dom projections, a method which exploited the dimensional-
ity reduction of principal component analysis, and a second
PCA-based method which also aimed to make the storage
process more efficient and provide qualitative image qual-
ity improvements by recognizing uniform patches in LUV
color-space. Our experiments demonstrated that the cost of

12

method rater 1 rater 2 rater 3 min max mean mode median
naive 0.7337 0.6700 0.6203 0.7247 0.6837 0.7484 0.6324 0.6636
pca 0.7450 0.7916 0.5061 0.6999 0.6791 0.8070 0.6695 0.7349

pca+u 0.6169 0.6685 0.6934 0.6340 0.6755 0.7635 0.6043 0.7276
Table 3: Here we determine what function of rater scores is most predictive of image compression ratios. We see that the mean across
the rater scores has the highest correlation with image compression, presumably because it filters out the noise inherent in subjective
judgements.

ORIGINALS RECONSTRUCTIONS

Figure 16: Here we plot 6 sample reconstructions (using the pca NN method) that had high compression ratios and relatively high
ratings (mean over 3 raters).

(a) (b)
Figure 17: (a) Although there is some difference across ratings, all raters agree that the pca NN method produces the highest quality
reconstructions. (b) Reconstruction quality is inversely proportional to compression ratio. Different applications might desire different
settings.

13

image insertion for our PCA-based hashing grows at a much
slower rate than the naive method. Meanwhile, qualitative
evaluation demonstrated that the reconstruction quality im-
proved with our advanced methods while sacrificing little in
additional patch storage. Our methods allowed for patch
matching far faster than brute force methods, which early
experiments proved to be infeasibly slow.

A few open questions remain. Although most insertion
strategies are likely bounded by a quadratic asymptotic run-
time, it remains an open question what the expected runtime
of our hashing based insertion methods - although we empir-
ically see the cost of each additional image scaling roughly
linearly in database size, the trend remains to be proven.
While our insertion method is much faster than the brute
force method, which we found to be intractably slow for our
purposes, it is an open question if a method exists which can
still provide good compression and database growth guaran-
tees while having a constant insertion cost.

Finally, although we saw storage improvements in a regime
of 10,000 images with good compression quality, we antic-
ipate these trends to be more pronounced for very large
databases of 10,000,000 images or more. More experiments
still need to be run to validate this belief empirically.

9.1 Applications
One of the appeals of this approximate patch-based ap-

proach is that it naturally lends itself to applications. In this
section we describe methods to use our database for two ap-
plications - duplicate detection and similar image retrieval.

9.1.1 Duplicate Detection
Encoding images as pointers to a collection of patches pro-

vides the ability to quickly spot images that contain large
overlapping regions (composed of the same patches). In the
extreme case, if multiple images point to the same set of
patches, then we know these images are duplicates. Du-
plicates are a big problem in big computer vision datasets
because they occur frequently and are hard to manually re-
move. They occur frequently (sometimes up to 10% of the
time) because these datasets are automatically scraped from
the internet, where the same image can occur under sepa-
rate identifiers (on different websites, copied and uploaded
by different users, etc.). The SUN database [12] used in this
paper is no exception.

Duplicates are difficult to detect because not all duplicates
are pixel-wise identical: the same image encoded using dif-
ferent standards or sized to different dimensions (even when
resized to the same dimension later) will look almost identi-
cal to the human eye, but will contain different pixel values.
Our patch distance metric is forgiving to perturbation at the
pixel-level as long as the patch is overall similar to another
patch (see sec.6.3). If multiple images map to the same
set of patches that means that the corresponding patches in
those images are within a distance threshold of each other
(upper-bounded by 2T). If multiple images map to all of
the same patches, then we have good guarantees that the
images are near-duplicates. Otherwise, the probability that
every single patch matched would be low (i.e. low that two
images are similar locally, for multiple local locations - as
many locations as patches).

We can use these properties to spot duplicates in our
database on-the-fly. For instance, when an image is added
to the database, we can measure how many new patches the

Figure 18: This is an example of the first 200 consecutive inser-
tion queries to an empty database: for each image inserted, we
can measure how many new patches were added to the patch dic-
tionary (out of 400 patches in the image). When we see that this
number spikes down to 0 we know that the image has been fully
reconstructed from patches from other images. We can check if
all those patches came from a single other image. If that is the
case, we know we have a duplicate or near-duplicate image.

image contributed to the patch dictionary (because similar-
enough patches could not be found), and how much of the
image was mapped to pre-existing dictionary patches. When
an image is reconstructed fully from the dictionary patches,
and the patches it is reconstructed from all come from a
single other image in the database, we know that the newly-
added image is a duplicate. This is depicted in fig. 18.

By the same logic, similar images are those that overlap
in terms of the patches they share in common. We can eas-
ily compare the two patch pointer vectors of two images to
check their overlap. We can check if this overlap corresponds
to patches clustered together in the images (for instance,
when only some local region of the images matches, like
when they share an object). We can thus discover images
that have different degrees of overlap with other images.

9.1.2 Photomosaics
One interesting (and somewhat whimsical) application of

our system is in the automated fabrication of photomosaics
from images. A photomosaic 2 is an image which is cre-
ated by partitioning a pre-existing 2-D piece of artwork into
small, equally sized rectangles. Each of these rectangles is
then replaced with a small image which approximates the
original color and texture of the rectangle, keeping the over-
all artwork recognizable. Thus, the final result is an image
composed of hundreds of smaller images.

Our system can be directly applied to the synthesis of
such images, with a few very small modifications. First, in-
stead of determining which patches to store based on our
previous dictionary and image collection, we a priori store a
selected input image set as our patch dictionary, but scaled
to ”patch size.” For demonstration purposes, we created our
patch dictionary by scaling down and storing the entire SUN
database. In order to create the photomosaic, we first choose

2See, for example, http://en.wikipedia.org/wiki/
Photographic_mosaic.

14

http://en.wikipedia.org/wiki/Photographic_mosaic
http://en.wikipedia.org/wiki/Photographic_mosaic

and store a target image we would like to transform. In stor-
ing the image, we, as usual, split the image into patches, and
for each patch perform a nearest neighbor search. However,
in this case, if no patch already exists in the hashed bin,
we expand our nearest neighbor search to more bins until
we find a bin with at least one patch, and choose the most
similar one. During this step, we never store patches; we
always map the patch to one already in the dictionary. The
mapping output by this process results in a photomosaic.

We demonstrate this process on a 1600x1200 image of the
Stata Center at MIT, using 25x25 rectangular patches. We
show the original image and reconstruction in figure 19.

9.2 Future Extensions
In this paper we considered a simple implementation of a

patch-based image database compression scheme, where the
images and patches were square and of fixed sizes. Patches
were sampled in a regular, non-overlapping grid from each
image. Alternative approaches include more flexible, context-
aware, patch-sampling techniques. For instance, the patch
granularity for sampling large homogenous sky and field
regions may be different from the one used for sampling
highly-textured regions like objects and structures (trees,
buildings, people, etc.). Similarly, patches that do not cross
object boundaries are likely to lead to less artifacts in future
reconstructions. For this, approaches like Selective Search
[10] that localize image regions likely to contain objects, may
prove promising for sampling patches.

If patches were different sizes, then one of a number of ex-
tensions to the system would be required - for instance, (1) a
patch transformation scheme, or (2) a hierarchical patch dic-
tionary. A patch transformation scheme would permit each
patch to be transformed (in a simple way - e.g. via rescal-
ing) to match another patch with the same appearance but
different (scale) parameters. For instance, a small patch in
one image may be sufficient to account for a much larger
part of another image, and rather than storing many sepa-
rate patches of different sizes, we would benefit from quickly
applying transformations to existing dictionary patches. To
implement this system would require storing, for each im-
age location, not only a pointer to a patch in the patch
dictionary but also a transformation (e.g. a set of scaling
parameters). Naturally, the cost function (to weigh the ben-
efits of such a scheme vs storing the original images or even
equally-sized patches) would need to take into account (a)
the extra parameters stored along with each image location,
and (b) the reconstruction time overhead for patch transfor-
mation. With large enough datasets, this approach may be
effective at eliminating redundancy.

Another approach, building hierarchical patch dictionar-
ies, may speed up the patchifying and subsequent recon-
struction of an image, by offering a top-down approach. If
larger patches match, there is no need to parse the image at
a finer-grained scale. Only if large patches do not properly
account for the structure in an image, would it be necessary
to go to a finer-grained patch size. Note that small patches
could be composed into larger patches, via a hierarchy, so
that if large-patch matches are not found, descending down
the patch hierarchy of the best-matching large patches would
make it possible to find a match at a lower granularity. This
scheme would be less flexible than the patch transformation
scheme, but may prove to be more efficient.

10. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, Jan. 2008.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B.
Goldman. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM
Transactions on Graphics (Proc. SIGGRAPH), 28(3),
Aug. 2009.

[3] M. Brown. Multi-image matching using multi-scale
oriented patches. In CVPR, pages 510–517, 2005.

[4] E. S. R. Institute. Arcgis desktop: Release 10, 2011.

[5] A. E. Jacquin. Image coding based on a fractal theory
of iterated contractive image transformations. IEEE
Transactions on Image Processing, 1992.

[6] H. Kekre and V. K. Banura. Performance comparison
of image retrieval using kfcg with assorted pixel
window sizes in rgb and luv color spaces 1. 2012.

[7] M. Meeker. Internet trends 2014 - code conference,
2014.

[8] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier.
Large-scale image retrieval with compressed fisher
vectors. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 3384–3391.
IEEE, 2010.

[9] A. Torralba, R. Fergus, and W. T. Freeman. 80
million tiny images: a large database for
non-parametric object and scene recognition. IEEE
PAMI, 30(11):1958–1970, November 2008.

[10] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers,
and A. W. M. Smeulders. Selective search for object
recognition. International Journal of Computer
Vision, 104(2):154–171, 2013.

[11] A. Vashist, Z. Zhao, A. Elgammal, I. Muchnik, and
C. Kulikowski. Discriminative Patch Selection using
Combinatorial and Statistical Models for Patch-Based
Object Recognition. In Proceedings of the 2006
Conference on Computer Vision and Pattern
Recognition Workshop. IEEE Computer Society
Washington, DC, USA, 2006.

[12] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and
A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. IEEE Conference on
Computer Vision and Pattern Recognition, 2010.

[13] M. Yasmin, M. Sharif, and S. Mohsin. Use of low level
features for content based image retrieval: Survey.
Research Journal of Recent Sciences, 2277:2502, 2013.

15

Figure 19: A sample photomosaic automatically generated by our system, with only a few small modifications as described in 9.1.2.

16

	Introduction
	Related Work
	Approach
	Overview
	Algorithm
	Patch Distance Metric
	Implementation
	Image Reconstruction

	Near Neighbor Search
	Locality-Sensitive Hashing
	Near-Neighbor Search with LSH
	Random Projections Hashing
	PCA-based Projection Hashing
	Hashing Uniform Patches

	Database Optimization
	Database Queries
	Patch Buffer Pool

	Parameter Estimation
	Patch Size
	Cost Evaluation

	Sampling strategies
	Distance Function
	Distance Threshold
	Generalization across image categories and sizes

	Quantitative Evaluation
	Qualitative Evaluation
	Conclusion
	Applications
	Duplicate Detection
	Photomosaics

	Future Extensions

	References

