
Fast Structural Analysis for Deforming Objects
Using Machine Learning

6.850 Project, Spring 2014

Maria Shugrina

MIT CSAIL

Abstract

The motivation of this work is customizing 3D models for fabri-
cation. It is desirable to update the visualization of the model’s
problematic areas in real time during editing, but often these anal-
ysis algorithms are very time consuming. We investigate creating a
fast update algorithm for per-vertex model fragility using machine
learning. We propose and analyze a new feature vector formulation
and present preliminary classification results.

Keywords: computational geometry, structural analysis

1 Introduction

Recently widely available 3D printing technology has made it pos-
sible to easily manufacture custom 3D models. Prior to manufac-
turing, it is desirable to analyze the digital design to ensure that it
is unlikely to break. At the very least, such analysis should detect
problems in the current design and provide a visualization of the
problematic areas to the user, who can fix them. The inherent ap-
peal of 3D printing is in the ability to customize manufactured 3D
models. Because customization is usually an interactive process,
a desirable property of all shape analysis algorithms is interactive
performance.

Available shape analysis fall into two categories: simulation-based
approaches estimating areas of high stress, and purely geometric
approaches estimating minimum thickness of the object. Unfortu-
nately, both categories of algorithms involve computationally ex-
pensive operations such as conversion to a discrete volumetric rep-
resentation and medial axis transform, making them infeasible for
interactive applications (See Section 2). We argue that for the pur-
pose of interactivity, fast and approximate algorithm is needed, and
explore a machine learning approach to this problem.

More concretely, we consider the problem of annotating each ver-
tex of a deforming mesh with a color indicating its fragility in real
time. Intuitively, at each deformation step that moves m vertices of
the mesh, the complexity of the analysis algorithm should be equiv-
alent to the complexity of the deformation itself: O(m). In Section
3, we provide a machine learning formulation for the problem of
updating fragility of a deforming mesh, and explain the query time
algorithm. In Section 4, we provide details about the training pro-
cess, including data used, feature vectors and the classifier. Section

5 concludes with the evaluation and discussion.

2 Related Work

Recent interest in 3D printing has inspired research on automatic
analysis of 3D models for printability. A key question that such
analysis should answer is whether there are features of the model
that are too thin and are likely to break when manufactured.

Special-case Interactive Analysis: Interactive methods for design
analysis have been proposed for limited classes of fabricable mod-
els. For example, Umetani et al. has proposed interactive methods
for designing furniture [Umetani et al. 2012] and clothing [Umetani
et al. 2011], while analyzing the design in real time. Recently,
Umetani et al have also proposed a fast approximate structural anal-
ysis method using approximate cross-secitonal analysis [Umetani
and Schmidt 2013]. Our approach takes a similar philosophy, but
instead of simplifying analysis based on physically-inspired heuris-
tics, we endeavor to learn the results of principled structural anal-
ysis using machine learning. The approaches are very different in
spirit, but similar in motivation.

Simulation-based Analysis: Several existing approaches to this
problem rely on physical simulation to predict fragile areas. Stava
et al. solve for the stress through an FEM simulation of the dis-
cretized object volume under heuristically estimated loads and pro-
pose a method for correcting the areas of high stress [Stava et al.
2012]. Zhou et al. perform worst-case analysis of the model under
load and estimate fragile areas by running modal analysis of the
discretized model and maximizing stress [Zhou et al. 2013]. Al-
though these methods produce accurate results, they require costly
discretization of the object volume, making them prohibitively ex-
pensive to use during interactive mesh deformation.

Medial Axis Transform: Purely geometric methods for estimting
minimum thickness have been proposed. The canoncial approach
relies on the medial axis tramsform (MAT) [Blum et al. 1967],
which approximates the shape with a set of tangent spheres. Com-
putation of MAT is computationally expensive and unstable, but
a number of approximate approaches have been proposed, such as
[Foskey et al. 2003] and [Giesen et al. 2009]. While well-suited for
extracting a shape skeleton, these approximations do not guaran-
tee a good approximation of the MAT for the purpose of minimum
thickness computation.

Other Geometric Approaches: Simpler geometric approaches
have also been proposed. For example, Telea et al. propose vox-
elizing the mesh and analyzing the result of dilation and erosion
operations for thin features [Telea and Jalba 2011]. Addition-
ally, [Shapira et al. 2008] define a shape diameter metric closely
linked to the minimum thickness. Though significantly simpler than
simulation-based approaches, these methods have not been tested
or analyzed for interactive performance. We note that voxeliza-
tion is an expensive procedure if high precision is desired, and
the complexity of the shape diameter metric scales at least lin-
early with the number of vertices in the mesh (exact complexity
is implementation-dependent).

Interactive Deformation: In contrast to shape analysis, interactive
deformation techniques have been developed for high-resolution
3D meshes, motivating fast minimum thickness computation. Typ-
ically, deformation techniques rely on a small number of control
handles, but the computation complexity varies. For example, hier-
archical approaches can achieve sublinear performance in the num-
ber of vertices, and other approaches such as LBS achieve linear
complexity. Ideally, the complexity of minimum thickness com-
putation for a deforming model should be comparable to the com-
plexity of the deformation. In the ideal case, the complexity would
vary with the number of deformation handles, not mesh resolu-
tion. Investigating reduced representations is the future work of
this project, but its current aim is to reduce the complexity of the
analysis algorithm to the complexity of the deformation.

Reduced Representation: There are a number of approaches for
reducing the dimensionality of the deformation space. Modal anal-
ysis is commonly used in graphics to reduce the deformation space
from O(v) to O(r), where v is the number of vertices in the mesh
and r is the number of principal deformation directions extracted
using PCA [Huang et al. 2009]. For instance, [Barbič and James
2010] exploit the structure of this modal space to reduce the lower
bound for a related problem of self-collision detection from Θ(f)
to Θ(r), where f is the number of faces and r is as above. In a
similar vein, [Pan et al. 2013] use active learning in the configura-
tion space (relative object translation, rotation) for computing inter-
penetration depth between two rigid objects. Another common
reduced space is the so-called pose space or shape space [Lewis
et al. 2000] that represents the parameters of the deformation han-
dles which map to vertex displacements in the much larger object
space.

3 Method

3.1 Problem

Consider a computationally expensive structural analysis algorithm
A that computes a fragility estimate f(vi) at every vertex vi of a 3D
mesh. We define A in those terms, because the ultimate motivation
of interactive stuctural analysis is to give desinger a visual cue of the
problems in the mesh in real time during editing. Such visualization
is often accomplished through vertex coloring.

For every new meshGrest that the user would like to deform we can
use A to precompute frest(vi), the ground truth fragility estimate
at every vertex vi in the rest pose. Ideally, after every deformation
D we would run A on the deformed mesh GD , obtaining exact
fragility fD(vi) for every vertex. Because this computation is not
feasible in real time, we define our goal as finding ∆f(vi), the
change in fragility compared to the rest pose at all affected vertices:

∆fD(vi) = fD(vi)− frest(vi) (1)

To come up with an approximation ∆̃fD(vi) for this value quickly,
we formulate the problem in terms of machine learning.

3.2 Machine Learning Formulation

We formulate our problem as learning a regression classifier over a
training set of samples {xj , yj} across multiple deformed meshes.
In our formulation, xj is a k dimensional vector defined for a par-
ticular vertex in some deformed mesh, and yj is the ground truth
change in fragility at that vertex relative to the rest pose.

After training a Support Vector Regression (SVR) [Drucker et al.
1997] classifier C on the training data, we can obtain an estimate
for the change in fragility ∆̃fD(vi) by evaluating C(x(vi)) where

x(vi) is a feature vector for some new vertex vi from a mesh that
need not be in the training set, under a new deformation. We choose
not to focus on the Machine Learning aspects of the problem, but
treat SVR as existing method known to work. The first key to suc-
cess of our approach is in selecting appropriate features and training
data, not in the choice of the classifier.

3.3 Update Algorithm

Given a regression classifier C, the run time algorithm for updating
the fragility values of mesh vertices after a single deformation step
is as follows:

1: Precompute: frest(vi), x(vi) ∀vi ∈ Grest
2: for deformation step D do
3: for all vi with changed feature vector x(vi) do
4: recompute x(vi)

5: ∆̃fD(vi)← C(x(vi))

6: fragility at vi ← frest(vi) + ∆̃fD(vi)

Evaluating C takes O(1), so the running time of this algorithm is
O(w · tx), where w is the number of vertices whose feature vector
has changed and tx is the time to recompute a single feature vec-
tor. Ideally, we would like a running time that is polynomial in m,
the number of vertices moved by the deformation D, but the actual
running time depends on the feature vectors used. We analyze the
running time for our particular vectors in Section 5.1.

4 Training

4.1 Data

We used four meshes of varying resolution for training, and two
meshes for testing (See Table 1). Each mesh was manually anno-
tated with deformation handles using a hand-built tool (See 4.4).
Each training mesh was automatically deformed and sampled.

4.2 Features

We define a feature vector for each vertex vi relative to its support
vertices, determined for the rest pose during the precomputation
step. During this precomputation, for each vertex vi with normal
vector ni we run the following algorithm to compute supports(vi):

shoot ρ rays in a cone around −ni
for ray rj do

find closest intersected face fj
supports(vi)← sample k vertices from faces {f1...fρ}
di ← vector of distances to support vertices

For each vertex, we shoot ρ random rays (used ρ = 25) by uni-
formly sampling the unit circle and then projecting it relative to the
vertex position such that all the rays fall inside a 20◦ cone around
the negative normal (See Fig. 1 a). For each ray, we find the clos-
est intersected face and take the union of all the vertices in these
faces for all rays. From this set of vertices we uniformly sample k
vertices (used k = 6) to obtain the support vertices supports(vi)
of vertex vi (See Fig. 1 b, c). We stack distances from vi to its
supports in the rest pose into a vector di.

To compute the actual feature vector at vertex vi after deformation,
we compute the differences in the distances to its support vertices
relative to the rest pose (See Fig. 1 d, with deltas shown in red
and rest pose distances shown in black). We stack the deltas in a
vector and sort the vector from max delta to low delta to obtain a
feature vector for vertex vi in a deformed mesh. The hope is that

Mesh vertices handles undersupp. Precomp samples
1K 7 60 7min 100 × 30 poses

1.8K 3 15 16min 200 × 10 poses

1.8K 3 10 15min 200 × 10 poses

4K 9 8 1hr 13min 20 × 40 poses

40K 5 N/A too slow! N/A

173K 8 N/A too slow! N/A

Table 1: Training and test data used; meshes used only for testing are highlighted in blue. Meshes that I set up for use with Biharmonic
weight handles, but which ended up too large for unoptimized ground truth computation are shown in red.

the distribution of the changes to support vertices will carry infor-
mation about the relative shift of the opposing faces.1 Of course,
the angle of the cone of rays, the parameter k and the number of
sampled rays will affect performance, but rigorous experimentation
with these parameters is outside the scope of this project.

Corner cases: It is possible to get no support vertices for vertices
on sharp features of the object. We call such feature vectors mal-
formed and skip training or evaluating the classifier on these fea-
tures. It is also possible that the union of all the intersected faces
(See Fig. 1 c) has fewer than k vertices; we call such features under-
supported. In this case, we double-sample some of the vertices. The
intuition for that is that if ∆dj for missing supports will be set to
any arbitrary value (either zero or some maximum threshold), this
will introduce noise into the system, because having ∆dj equal to
0 is very informative. Instead, if you visualize double sampling as
simply having two support vertices very close to each other, double
sampling strategy is well-justified.

Scale-invariance: To achieve scale-invariance when training on
a variety of meshes, the actual feature vector contains percent
changes, not raw deltas. The ground truth label also represents per-
cent change in the fragility value.

Performance Issues: Simply running Möller–Trumbore intersec-
tion algorithm [Möller and Trumbore 1997] for every triangle to de-
termine ray triangle intersections proved prohibitively expensive for
meshes with more than 4K vertices. To make this feasible, I started
implemented a naive grid-based acceleration structure to cull the
faces that are unlikely to be intersected to be able to use the T-rex

1This feature vector is my invention and is inspired by histogram-based
shape discriptors. I hope to run more experiments using this feature vector
in the future.

and armadillo models, but unfortunately ran out of time. Hence, the
variety of training and test data leaves more to be desired.

4.3 Ground Truth

For this project, we used a variant of shape diameter [Shapira et al.
2008] as a proxy for shape fragility at a vertex (See Fig. 2). 2 Of
course, using a more sophisticated ground truth function such as
FEM simulation of the object under gravity would be more com-
pelling.

Our shape diameter implementation is similar to the feature com-
putation. To find shape diameter fragility fi at a vertex vi, we run
the following algorithm:

shoot ρ rays in a cone around −ni
for ray rj do

find distance Dj to the closest intersected face
fi ← weighted sum of Dj’s

Instead of discarding the outliers and taking the median of the dis-
tances as in [Shapira et al. 2008], we take a weighted sum of the ray
lengths. The weight is computed using a 2D standard normal distri-
bution with the position of every sampled ray taken from the sample
point in the unit circle used to sample it (See Fig. 1 a). Thus, dis-
tances closer to the normal direction take on more weight. Because
this method for estimating ground truth mostly serves as a starting
point, we have not looked into other weighing schemes. For future
work, we plan to replace shape diameter with physical simulation.

Labeling the training data: The actual label we are learning is

2Originally, I planned to use the open source version of shape diameter,
but it was too difficult to get compiled and refactored into a usable form, so
I have reimplemented it.

(a) Sample rays in a cone around
−n using unit circle.

(b) For each ray find the closest
intersected face.

(c) Sample k vertices out of ver-
tices of the intersected faces, and
save the distances to support ver-
tices for rest pose.

(d) After deformation, deltas ∆d
in distances to support vertices
form the feature vector.

Figure 1: Computing the feature vector, steps a-c occur during pre-
computation for the rest pose, and step d occurs after deformation.

the difference in fragility between the rest pose and deformed pose.
Thus, every sample in the training data is a feature vector at a given
vertex, and its label y is the signed difference between rest pose
fragility and fragility at that vertex in the deformed mesh.

Visualization: The ultimate goal is to visualize fragility of the de-
forming mesh in real time. To visualize shape diameter, we nor-
malize fragility at each vertex by the maximum fragility in the rest
pose and map this value to hue in the HSV color system. We exper-
imented with polynomial and sigmoid mappings of fragility to hue,
but found that uniform mapping is most intuitive. Blue corresponds
to low fragility (large shape diameter), green and yellow to medium
values, and red corresponds to high fragility (small shape diameter)
(See Fig. 3).

4.4 Deformation Model

Because sampling across the range of deformed models is part of
the training process, the choice of the deformation model is signifi-
cant. For example, if the deformations sampled involved randomly
perturbing certain vertices, the classifier would not have any data to
learn about more smooth and intuitive deformations.

For our work, we train and test on the same class of deforma-
tion. We have built a tool to place point controls inside a 3D mesh,
and have manually added point controls to all the training and test
meshes (See Table 1). Then, we used open source implementa-
tion of Bounded Biharmonic defomration weights [Jacobson et al.
2011] to calculate the influence of each point control on each ver-

Figure 2: Computing the shape diameter function; image from
[Shapira et al. 2008].

(a) Bunny. (b) Octopus.

Figure 3: Visualization of the shape diameter computed using our
implementation. Observe that the thin features such as ears and
tentacles appear red.

tex of the mesh (See Fig. 4). Each control has 6 digrees of freedom,
and it effects a similar transformation on the neighboring vertices,
proportional to its influence.

We have chosen this deformation method because it tends to pro-
vide smooth and intuitive results, and fragility transformations un-
der such well-behaved deformation may be easier to learn.

4.5 Classifier

We use SVR regression classifier available as a part of libSVM
package [Chang and Lin 2011].

5 Evaluation

5.1 Complexity

In this section we analyze the complexity of the update algorithm
in Section 3.3. The time to recompute the feature vector for a single
vertex takes time O(k log k), because the k distance deltas need to
be sorted. For a constant k, we are mostly concerned with bounding
the number of vertices for which feature vectors need to be recom-
puted after a deformation step that moves m vertices. Thus, we
need to bound the number of vertices with moved vertices as their
supports.

(a) Weights for handle 1. (b) Weights for handle 2.

(c) Deformation from handle 2. (d) Deformation from multiple
handle transofrms.

Figure 4: Visualization of the biharmonic deformation weights for
the bunny model with 3 deformation handles. The deformation han-
dles were placed inside the object using a tool we built. Differnt
deformation handles are selected in different screenshots (see green
arrow), and red coloring corresponds to the influence of that handle
on the vartices.

5.1.1 Theoretical

In the worst case, one of the moved vertices could support all of the
mesh’s vertices, resulting in run time complexity O(vk log k). The
expected complexity is much better, however. Consider a directed
graph where an edge from vertex A to B means that B supports A
(See Fig. 5). We are interested in the expected number of incom-
ing edges for a randomly chosen set of m vertices. Although the
graph has variable indegree, its outdegree is a constant k for every
vertex. Thus, on average, the number of incoming edges for a set
of m vertices will be the same as the number of outgoing edges:
mk. This means that expected run time of the update algorithm
is O(mk2 log k) ≈ O(m), meeting our initial goal of getting the
same complexity as the complexity of the deformation itself, i.e.
O(m).

5.1.2 Empirical

In the previous section, we relied on the assumption that the set of
moved vertices was chosen uniformly at random. This is certainly
not the case for most deformations that occur in practice. To explore
this dependance, we have sampled various numbers m of vertices
in four test meshes and computed the number of feature vectors that
would have to be recomputed if thesem vertices moved. We selcted
m vertices using three different deformation techniques:

1. Biharmonic handle deformation - see Section 4.4.

2. Random vertex deformation - m vertices are selected at ran-
dom.

Figure 5: Graph of vertices and their supports with a constant
outdegree of k.

3. Local deformation - m vertices are selected by picking a ran-
dom vertex and growing selection region around it by follow-
ing edges until m vertices are selected.

The plots of Number of Feature vector recomputations vs. m are in
Fig. 6.

The number of feature vector recomputations scales linearly for Bi-
harmonic weight deformation, as predicted assymptotically. We
conjecture that this is likely because this deformation model is very
smooth and tends to affect volumetrically contiguous regions of the
mesh at the same time. Other two deformation models stray from
the assymptotic predictions, as, of course, actual number of fea-
ture vector recomputations depends on k, which is non-negligible
in practice. As expected, Random vertex deformation saturates
the number of feature vector precomputations to the total vertex
count more quickly, as all regions of the mesh are affected by this
deformation uniformly at random (See Fig. 6 b). Local deforma-
tion tends to require fewer re-computations, but the plota are noise:
as would be expected, the number of recomputations depends on
which location is picked for the local deformation.

We note that although the number of feature vector recomputations
may reach the total number of vertices, the complexity and run-time
of the fragility update algorithm is still much lower than that of the
structural analysis algorithms listed in Section 2.

5.2 Accuracy

Evaluation set Mean Abs Error Stdev Abs Error
Training Set 8.723 14.86
Testing Set 5.7669 9.34

Table 2: Error on the initial classifier.

As discussed earlier, more training data is necessary to give cred-
ibility to these results. We also suspect that the shape diameter
ground truth function itself is quite noisy, and a more determinis-
tic ground truth function would be easier to learn. There are other
aspects of this method that need attention:

1. Training meshes must be diverse

2. Deformation sampling must be diverse and encompas repre-
sentative deformations

3. Ground truth function should be less susceptible to noise
(shape diameter is itself an approximation)

4. Vertex sampling for each pose should ensure that the deltas in
fragility are well represented

(a) Biharmonic Handle deformation.

(b) Random vertex deformation.

(c) Local deformation.

Figure 6: Empirically measured w, number of vertices with
changed support vectors, for various meshes and numbers of moved
vertices m using three different deformation models.

Therefore, all results need to be taken with a grain of salt, and there
is certainly evidence indicating that something is not right.

Still, we have trained a classifier on the samples obtained from three
training meshes in Table 1, and have evaluated the classifier on the

(a) Absolute error vs. Ground truth.

(b) Distribution of absolute error.

Figure 7: Results of the initial classifier on the test set. In a, large
errors tend to occur when the fragility changes by a really large
percent. In b, we see the distribution of absolute errors: although
most errors are small, some are extremely large.

training data and on the test data from the octopus model. We eval-
uate our classifier in a scale-invariant manner. First we let ground
truth y be the percent by which the fragility actually changed after
deformation. The classifier predicts this value with a y′ for each
test sample.

In Table 2 we summarize statistics about absolute error |y − y′|
for test and train sets. Paradoxically, the error on the test set is
lower. We hypothesize that this is due to abysmally small number
of training meshes. Still, the mean error looks fairly small. To gage
how useful such a classifier would be, we plot actual error against
the ground truth estimate in Fig. 7 a. It turns out that larger er-
rors tend to occur where the fragility changes a lot. Glancing at the
training data, it seems that there are not enough samples where the
fragility value is changing much, so there is probably not enough
data to learn that dependance. Finally, Fig. 7 b shows the distri-
bution of absolute errors. Although most errors are small, some
are exteremely large, rendering classifier impractical without per-
formance improvements.

5.3 Discussion

It is hard to gage the method’s usefulness from these very prelim-
inary results. The fact that the error distribution is skewed toward
zero (Fig. 7) gives hope that this method may turn out positive re-
sults with more care devoted to preparing training set, sampling de-

formations and ensuring that the training data covers a wide range
of fragility changes.

We believe that this approach is very promising in terms of its run-
time and are enthusiastic about applying it to estimating results of
physical simulation, which tends to be prohibitively slow for inter-
active applications.

References

BARBIČ, J., AND JAMES, D. L. 2010. Subspace self-collision
culling. In ACM Transactions on Graphics (TOG), vol. 29,
ACM, 81.

BLUM, H., ET AL. 1967. A transformation for extracting new
descriptors of shape. Models for the perception of speech and
visual form 19, 5, 362–380.

CHANG, C.-C., AND LIN, C.-J. 2011. LIBSVM: A library
for support vector machines. ACM Transactions on Intelligent
Systems and Technology 2, 27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

DRUCKER, H., BURGES, C. J., KAUFMAN, L., SMOLA, A., AND
VAPNIK, V. 1997. Support vector regression machines. Ad-
vances in neural information processing systems 9, 155–161.

FOSKEY, M., LIN, M. C., AND MANOCHA, D. 2003. Efficient
computation of a simplified medial axis. Journal of Computing
and Information Science in Engineering 3, 4, 274–284.

GIESEN, J., MIKLOS, B., PAULY, M., AND WORMSER, C. 2009.
The scale axis transform. In Proceedings of the 25th annual
symposium on Computational geometry, ACM, 106–115.

HUANG, Q.-X., WICKE, M., ADAMS, B., AND GUIBAS, L. 2009.
Shape decomposition using modal analysis. In Computer Graph-
ics Forum, vol. 28, Wiley Online Library, 407–416.

JACOBSON, A., BARAN, I., POPOVIC, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4, 78.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 165–172.

MÖLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage
ray-triangle intersection. Journal of graphics tools 2, 1, 21–28.

PAN, J., ZHANG, X., AND MANOCHA, D. 2013. Efficient pene-
tration depth approximation using active learning. ACM TRANS-
ACTIONS ON GRAPHICS 32, 6.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. The Visual Computer 24, 4, 249–259.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: improving structural strength of 3d printable
objects. ACM Transactions on Graphics (TOG) 31, 4, 48.

TELEA, A., AND JALBA, A. 2011. Voxel-based assessment of
printability of 3d shapes. In Mathematical Morphology and Its
Applications to Image and Signal Processing. Springer, 393–
404.

UMETANI, N., AND SCHMIDT, R. 2013. Cross-sectional structural
analysis for 3d printing optimization. In SIGGRAPH Asia 2013
Technical Briefs, ACM, New York, NY, USA, SA ’13, 5:1–5:4.

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment mod-
eling and editing. ACM Trans. Graph. 30, 4, 90.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4, 86.

ZHOU, Q., PANETTA, J., AND ZORIN, D. 2013. Worst-case struc-
tural analysis. ACM Transactions on Graphics (TOG) 32, 4, 137.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

